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ABSTRACT
In this paper, we aim to design robust estimation tech-

niques based on the compound-Gaussian (CG) process and
adapted for calibration of radio interferometers. The motiva-
tion beyond this is due to the presence of outliers leading to
an unrealistic traditional Gaussian noise assumption. Conse-
quently, to achieve robustness, we adopt a maximum a poste-
riori (MAP) approach which exploits Bayesian statistics and
follows a sequential updating procedure here. The proposed
algorithm is applied in a multi-frequency scenario in order
to enhance the estimation and correction of perturbation ef-
fects. Numerical simulations assess the performance of the
proposed algorithm for different noise models, Student’s t, K,
Laplace, Cauchy and inverse-Gaussian compound-Gaussian
distributions w.r.t. the classical non-robust Gaussian noise as-
sumption.

Index Terms— Bayesian calibration, compound-Gaussian
distribution, robustness, maximum a posteriori estimation

1. INTRODUCTION

Robust calibration in radio astronomy amounts to estimating
all environmental and instrumental perturbation effects which
corrupt the signal of interest in a non-Gaussian environment.
Indeed, radio interferometric data are affected by the occur-
rence of outliers due, e.g., to man-made radio frequency in-
terferences or unmodelled weak sources [1–3]. Therefore,
estimation under a conventional Gaussian noise model does
not perform optimally and robust calibration is required. Fur-
thermore, unknown perturbation effects being highly variable
in frequency [4], exploiting their variation w.r.t. frequency
improves estimation performance in the calibration process
while maintaining an acceptable computational cost [5,6]. To
this end, calibration can be reformulated as a distributed con-
sensus optimization problem and solved thanks to the alter-
nating direction method of multipliers (ADMM) [7].
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and ANR ASTRID project MARGARITA (ANR-17-ASTR-0015).

To investigate non-Gaussian modeling, we consider a
two-scale compound-Gaussian (CG) process, also referred to
as a spherically invariant random variable in the radar com-
munity [8,9], which is represented as the product of a positive
texture term with a given a priori distribution, multiplied by a
complex speckle component following a zero-mean Gaussian
distribution. Such a model is suitable for practical scenario
and widely used in signal processing applications [10, 11]. In
our scenario, the statistical distribution of the texture param-
eter is unknown. Thus, we study different prior distributions
for the texture, available in closed-form, and generating var-
ious non-Gaussian (heavy-tailed) noise models. In order to
estimate perturbation effects and noise parameters, we de-
vise an iterative algorithm where optimization is performed
successively w.r.t. each unknown parameter, while fixing
the others. A maximum a posteriori (MAP) approach is
adopted to exploit the statistical information and incorporate
the texture prior distribution, leading to the so-called iterative
maximum a posteriori estimator (IMAPE).

In this paper, we use the following notation: symbols
(·)T , (·)∗, (·)H denote, respectively, the transpose, the com-
plex conjugate and the Hermitian operator. The Kronecker
product is represented by ⊗, E{·} denotes the expectation
operator and diag{·} converts a vector into a diagonal ma-
trix. The trace and determinant operators are, respectively,
given by tr {·} and | · |. Finally, the symbol I2 represents the
2 × 2 identity matrix, vec(·) stacks the columns of a matrix
on top of one another, j is the complex number whose square
equals−1, Γ(·) is the gamma function and Ψ(·) the digamma
function, such that, Ψ(x) = ∂ ln (Γ(x)) /∂x.

2. DATA MODEL

2.1. Direction dependent regime

In radio astronomy, propagation of the i-th 2-dimensional in-
coming signal s

[f ]
i at frequency f ∈ F = {f1, . . . , fF } gen-

erates the following voltage at antenna p [12]

v
[f ]
i,p(θ

[f ]) = J
[f ]
i,p(θ

[f ])s
[f ]
i (1)
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where the so-called 2×2 Jones matrix J
[f ]
i,p(θ

[f ]) is parametrized
by unknown vector θ[f ] and accounts for all perturbation ef-
fects along the propagation path [13].

For each antenna pair (p, q), the interferometer measures
cross-correlations between voltages, given by

S[f ]
pq (θ[f ]) = E

{(
D∑
i=1

v
[f ]
i,p(θ

[f ])

)(
D∑
i=1

v
[f ]H

i,q (θ[f ])

)}

=
D∑
i=1

J
[f ]
i,p(θ

[f ])C
[f ]
i J

[f ]H

i,q (θ[f ]) (2)

where D is the number of known calibrator sources, (p, q) ∈
{1, . . . ,M}2 with M the number of sensor elements and

C
[f ]
i = E{s[f ]i s

[f ]H

i } stands for the known source coherency
matrix [14]. We rewrite (2) as a 4 × 1 measurement vector
and add the noise contribution, such that,

x[f ]
pq =

D∑
i=1

s
[f ]
i,pq(θ

[f ]) + n[f ]
pq (3)

in which s
[f ]
i,pq(θ

[f ]) = vec
(
J
[f ]
i,p(θ

[f ])C
[f ]
i J

[f ]H

i,q (θ[f ])
)

=(
J
[f ]∗

i,q (θ[f ])⊗ J
[f ]
i,p(θ

[f ])
)

c
[f ]
i and c

[f ]
i = vec(C

[f ]
i ). If we

note B = M(M−1)
2 the global number of antenna pairs, all

cross-correlation measurements are given by the following
4B × 1 full observation vector at frequency f

x[f ] =
[
x
[f ]T

12 ,x
[f ]T

13 , . . . ,x
[f ]T

(M−1)M

]T
. (4)

Each Jones matrix J
[f ]
i,p(θ

[f ]) in (1) can be decomposed
into a particular sequence of individual Jones terms [14].
Each of them corresponds to a particular effect along the
signal propagation path. More specifically, we can write

J
[f ]
i,p(θ

[f ]) = G[f ]
p (g[f ]

p )H
[f ]
i,pZ

[f ]
i,p(ϕ

[f ]
i,p)F

[f ]
i,p(ϑ

[f ]
i,p) (5)

where G
[f ]
p (g

[f ]
p ) = diag{g[f ]

p } stands for the complex elec-
tronic gain matrix and H

[f ]
i,p is assumed known, including

the geometric delay and beam pattern effects [13]. Due to
large distances between antennas and wide field-of-view,
propagation through the ionosphere leads to a per-antenna
direction dependent phase delay Z

[f ]
i,p(ϕ

[f ]
i,p) = exp

(
jϕ

[f ]
i,p

)
I2

but also to a rotation effect [15], named Faraday rotation

and written as F
[f ]
i,p(ϑ

[f ]
i,p) =

[
cos(ϑ

[f ]
i,p) − sin(ϑ

[f ]
i,p)

sin(ϑ
[f ]
i,p) cos(ϑ

[f ]
i,p)

]
.

Thus, the unknown parameter vector of interest which de-
scribes all Jones matrices at frequency f reads θ[f ] =

[ϑ
[f ]
1,1, . . . , ϑ

[f ]
D,M , exp(jϕ

[f ]
1,1), . . . , exp(jϕ

[f ]
D,M ),g

[f ]T

1 , . . . ,

g
[f ]T

M ]T .

2.2. Robust noise modeling

In order to propose a robust calibration algorithm, we study
the flexible CG representation which encompasses a broad
range of heavy-tailed distributions and can be written as [16,
17]

n[f ]
pq =

√
τ
[f ]
pq µ

[f ]
pq , (6)

where τ [f ]pq denotes the positive texture random variable and
µ

[f ]
pq ∼ CN (0,Ω[f ]) with a uniform prior on the positive

semidefinite cone for Ω[f ]. To avoid any ambiguity [18, 19],
we impose an arbitrary constraint on the speckle covariance
matrix Ω[f ], e.g., tr

{
Ω[f ]

}
= 1. Therefore, in our context,

calibration requires estimating not only parameters of interest
θ[f ] but also noise terms τ [f ] = [τ

[f ]
12 , τ

[f ]
13 , . . . , τ

[f ]
(M−1)M ]T

and Ω[f ].

3. MAXIMUM A POSTERIORI ESTIMATION

3.1. Principle of the proposed algorithm

In this section, we investigate robust calibration from a
Bayesian perspective. For this purpose, we focus on the
texture realizations and derive MAP-based estimators.

Assuming independence of n
[f ]
pq w.r.t. frequency chan-

nels f and antenna pairs (p, q), the conditional log-likelihood
function is written as

LC = ln p
(
{x[f ]}f∈F | {τ [f ];θ[f ],Ω[f ]}f∈F

)
= −

∑
f∈F∑

pq

(
1

τ
[f ]
pq

u[f ]H

pq (θ[f ])Ω[f ]−1

u[f ]
pq (θ[f ]) + ln |πτ [f ]pq Ω[f ]|

)
(7)

in which u
[f ]
pq (θ[f ]) = x

[f ]
pq −

D∑
i=1

s
[f ]
i,pq(θ

[f ]). Thanks to Bayes’

law, the joint log-likelihood function, denoted as LJ , reads

LJ = LC +
∑
f∈F

∑
pq

ln
(
p(τ [f ]pq ;ϕ[f ])

)
(8)

in which ϕ[f ] stand for the corresponding unknown hyperpa-
rameters which need to be estimated.

The MAP estimator consists in maximizing (8) w.r.t. each
unknown individual parameter. The expressions being mu-
tually dependent, we adopt an iterative procedure leading to
the IMAPE. More specifically, we optimize alternatingly w.r.t.
θ[f ], τ [f ], ϕ[f ] and Ω[f ] in a step-wise approach. At each
step, the remaining parameters are assumed fixed and known
from the previous iteration. The overall procedure of the pro-
posed IMAPE is shown in Table 1 hereafter.

Estimation of {θ̂
[f ]
}f∈F in step 1 of the IMAPE, for

a given {τ [f ]}f∈F and {Ω[f ]}f∈F , is detailed in [20, 21].
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Table 1: IMAPE Iterative MAP estimator

input : D, M , B, {{C[f ]
i }i=1,...,D,x

[f ]}f∈F
output : {θ̂

[f ]
}f∈F

initialize: {Ω̂
[f ]
← Ω

[f ]
init}f∈F ,

{τ̂ [f ]pq ← τ
[f ]
pqinit}f∈F, p<q, (p,q)∈{1,...,M}2

while stop criterion unreached do
1 {θ̂

[f ]
}f∈F = argmax

{θ[f]}f∈F
{LC}, see [20, 21]

2 Estimation of ϕ[f ] for f ∈ F

3 Ω̂
[f ]

= 1
B

∑
pq

u[f]
pq (θ̂

[f]
)u[f]H

pq (θ̂
[f]

)

τ̂
[f]
pq

Ω̂
[f ]

= Ω̂
[f]

tr
{

Ω̂
[f]

} for f ∈ F

4 Estimation of τ [f ] for f ∈ F

These parameters of interest vary specifically with frequency
such that we can reformulate the problem as a constrained
optimization scheme and solve it distributedly with a network
of agents and the consensus ADMM procedure [22]. Let us
note that ∂LJ = ∂LC if we take the derivative w.r.t. θ[f ] or
Ω[f ] and as mentionned previously, the normalization step

Ω̂
[f ]

= Ω̂
[f]

tr
{

Ω̂
[f]

} is added in step 3 of the IMAPE for proper

identifiability. Consequently, in what follows, we derive
and study for each prior distribution p(τ [f ]pq ;ϕ[f ]) the corre-
sponding IMAPE and highlight how the estimation of Jones
matrices’ parameters is affected in the numerical simulations
section. Thus, we focus on steps 2 to 4 of the IMAPE. Fur-
thermore, since the reasoning is equivalent for each frequency
f , we omit the frequency dependence in the rest of the paper
for sake of clarity.

3.2. Study of different texture priors

In the Bayesian approach, the expression of the joint log-
likelihood in (8) depends on p(τpq;ϕ), which describes the
statistics of the texture variable. In this section, we study dif-
ferent kinds of heavy-tailed CG distributions obtained with
different texture priors, available in closed-form [8, 9]. Then,
the corresponding estimators for ϕ, Ω and τ are deduced.

3.2.1. K-distribution

The noise vector npq is said to follow the K-distribution [8] if
the texture τpq is generated as

p(τpq; a, b) =
1

Γ(a)ba
τa−1pq exp

(
−τpq

b

)
(9)

which is a gamma distribution characterized by the shape pa-
rameter a and the scale parameter b, such that, ϕ = [a, b].

Table 2: IMAPE K-distributed noise
2 Obtain â solving

−BΨ(a) +
∑
pq ln(τ̂pq)−B ln(

∑
pq τ̂pq

Ba ) = 0

Obtain b̂ with (12)
3 Obtain Ω̂ with

Ω̂ = 2
B

∑
pq

upq(θ̂)u
H
pq(θ̂)

(â−5)b̂+
(
(â−5)2b̂2+4b̂uHpq(θ̂)Ω̂

−1
upq(θ̂)

)1/2

Ω̂ = Ω̂

tr{Ω̂}
4 Obtain τ̂ with (11)

Inserting (9) into (8) leads to

LJ =LC + (a− 1)
∑
pq

ln(τpq)−

∑
pq
τpq

b

−B ln(Γ(a))−Ba ln(b). (10)

Solving ∂LJ/∂τpq = 0 gives the following estimate for
the texture

τ̂pq =
(a− 5)b+

(
(a− 5)2b2 + 4bu

H

pq(θ)Ω−1upq(θ)
)1/2

2
.

(11)
From ∂LJ/∂ϕ = 0, we deduce the following analytical

expression for the scale

b̂ =

∑
pq
τpq

Ba
. (12)

Finally, the shape parameter has to satisfy the following equa-
tion

−BΨ(â) +
∑
pq

ln(τpq)−B ln(b) = 0 (13)

from which the shape parameter can be easily calculated nu-
merically.

For the K-distributed noise model, steps 2 to 4 of the
IMAPE are given in Table 2. Let us note that (12) was sub-
stituted into (13) and likewise, (11) was inserted into the ex-
pression of Ω̂ due to our iterative approach.

In the following sections, using the same technique, we
only give the results for the estimates of the unknown noise
parameters and deduce similar procedures as in Table 2.

3.2.2. Student’s t distribution

If the texture parameter follows an inverse gamma function,
given by

p(τpq; a, b) =
ba

Γ(a)
τ−a−1pq exp

(
− b

τpq

)
, (14)
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the corresponding noise model is a Student’s t distribution
[23]. With (14), (8) and the derivative w.r.t. τpq , we obtain

τ̂pq =
b+ u

H

pq(θ)Ω−1upq(θ)

a+ 5
(15)

while hyperparameters can be deducted from b̂ = Ba∑
pq

1
τpq

and

−BΨ(a)−
∑
pq

ln(τpq) +B ln(b) = 0. (16)

From now on, we introduce texture prior distributions
with only one hyperparameter to estimate.

3.2.3. Cauchy distribution

Using the inverse gamma prior distribution (14) with fixed
a = 1 leads to Cauchy noise modeling for npq [9]. This is a
particular case of section 3.2.2 where (16) becomes â = 1.

3.2.4. Laplace distribution

Let us consider the following exponential distribution as
prior: p(τpq;λ) = λ exp (−λτpq) characterized by rate pa-
rameter λ, and corresponding to Laplace noise [9]. After
some calculus, the texture estimate reads

τ̂pq =
−4 +

(
16 + 4λu

H

pq(θ)Ω
−1

upq(θ)
)1/2

2λ
(17)

while the single parameter λ is given by λ̂ = B∑
pq
τpq
.

3.2.5. Inverse Gaussian compound-Gaussian (IG-CG) distri-
bution

Finally, we consider the case when the texture variable is
modeled by an inverse Gaussian distribution, also known
as the Wald distribution, with shape λ and assumed unit
mean [8]. Thus, its probability density function is of the form

p(τpq;λ) =
(
λ
2π

)1/2
τ
−3/2
pq exp

(
−λ(τpq−1)2

2τpq

)
.

The resulting CG is called an IG-CG distribution and the
corresponding noise parameters are given by

τ̂pq =
−11 + (121 + 4λ(λ+ 2u

H

pq(θ)Ω
−1

upq(θ)))1/2

2λ
(18)

and λ̂ = B∑
pq

(τpq−1)2

τpq

.

4. NUMERICAL SIMULATIONS

We aim to compare the estimation performance of the IMAPE
for selected examples of CG-based noise models, in a realistic

-5 0 5 10

SNR (dB)
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M
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E
fo
r
ℑ
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1
]

8
] 1
}

IMAPE K distribution

IMAPE Student's T distribution

IMAPE Cauchy distribution

IMAPE Laplace distribution

IMAPE IG-CG distribution

Gaussian

Fig. 1. Evolution of the MSE for the imaginary part of a given
complex gain as a function of the SNR for different kinds of
CG distributions.
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Fig. 2. Evolution of the MSE for a given ionospheric phase
delay as a function of the SNR for different kinds of CG dis-
tributions.

situation for radio astronomy. Let us consider M = 8 anten-
nas in a 2-dimensional sensor array, D = 2 bright calibrator
sources and D′ = 4 weak background sources (at least 10
times weaker than the calibrator sources) which are spatially
randomly distributed following a uniform distribution. Pertur-
bation effects are randomly generated thanks to the measure-
ment equation in (5) and white Gaussian background noise
is added to the data. Due to the presence of faint unknown
sources, the noise can no longer be considered Gaussian. To
highlight the robustness of the proposed Bayesian method,
we compare with traditional calibration based on the mini-
mization of a least squares cost function, i.e., by assuming
independent Gaussian noise with no Bayesian approach.

In Figures 1 and 2, we plot the mean square error (MSE)
of the imaginary part of one given complex gain and one
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ionospheric phase delay, respectively, as a function of the
signal-to-noise ratio (SNR) for different noise modeling. The
SNR is defined as the ratio of the normalized power of the D
calibrator sources over the sum of normalized power of the
D′ background sources and a noise factor. The commonly
used Gaussian noise assumption has poor performance as ex-
pected while we notice some dissimilarities for the IMAPE
depending on which p(τpq;ϕ) is considered. We note that the
IMAPE based on Cauchy distribution provides the best per-
formance which can be selected as a competitive noise model
for Bayesian calibration of radio interferometers.

5. CONCLUSION

In this paper, we adopted a Bayesian approach for robust cali-
bration of radio interferometers where robustness needs to be
ensured due to the presence of outliers. To address this prob-
lem, we derived specific MAP-based estimators which exploit
the statistical distribution of the texture in the CG representa-
tion. Such family covers a wide variety of non-Gaussian mod-
els, obtained with different prior distributions. Application to
simulated data shows that the choice of the prior actually af-
fects the estimation of the perturbation effects and reveals to
be more or less accurate to model the noise contribution in
our application. This leads us to select the Cauchy distribu-
tion as a suitable model for the noise. Additional comparison
with realistic data simulations in the software Meqtrees and
real data will be performed in future work.
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