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Abstract—We propose a method for resolving the positions of
the initial source of heat propagation fields. The method relies
on the recent theory of compressed sensing off the grid, i.e. 7'V -
minimization. Based on the so-called soft recovery framework,
we are able to derive rigorous theoretical guarantees of approx-
imate recovery of the positions. Numerical experiments show a
satisfactory performance of our method.

Index Terms—Infinite-dimensional compressed sensing, Super-
resolution, Thermal field, High-coherent dictionary.

I. INTRODUCTION

The problem of resolving locations of thermal sources has
application in a wide variety of fields. Examples include
agriculture [1], climate change studies [2], thermal monitoring
of CPUs [3], and protecting the environment [4]. In the
literature, many strategies for attacking the problem of the
thermal field and/or source estimation can be found. Let us
summarize a few of the more recent ones:

In [5], [6], the authors have shown that the diffusion equa-
tion, which is the governing equation for thermal propagation
phenomena, acts like a low-pass filter. This fact can be used
to bound the aliasing error of the thermal reconstruction as a
function of time samples and the number of sensors provided
that the thermal field generated by initial sources.

The proposed mathematical spatio-temporal trade-off in [5]
between the number of sensors and time samples has been
further investigated in [7] as well as under a theoretical
frameworks called “dynamic sampling” [8]-[10] and more
recently in [11].

In order to address the problem of initial sources in [6]
and extend it to time-varying sources, the authors have been
extended their previous contribution in [12] by assuming
the time-varying emissions rates lie in two specific low-
dimensional subspaces [13, Page 134]. A similar extension
of [6] has been done in [14] by assuming that the sources can
induce in a time different than zero. Their method exploits
a different mathematical framework called Prony’s method
and can estimate the locations, time of inductions and also
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amplitudes of the instantaneous sources, under a separation
condition on the induction times. Several extensions of their
theory have been made such as the extension to other types of
sources, i.e. straight-line and polygonal sources [15] or other
governing equations such as wave and Poisson equation [16].
Their method requires relatively many samples and has not
exploited the inherent sparsity of the problem.

This is instead done in [17] and then extended to two-
dimensional sources in [18]. In these works the authors exploit
the spatiotemporal correlation of the samples governed by dif-
fusion equation as a side information into the recovery method,
combined with a compressed sensing approach, utilizing the
sparsity of thermal fields in the wavelet domain.

Another compressed sensing-based approach is carried out
in [19]. The authors utilize a different kind of sparsity, which
comes from the low number of generating sources (in partic-
ular, they use the analysis formulation of compressed sensing
and co-sparsity concept). The proposed framework is then
applied to acoustic and EEG source localization corresponding
to sound wave and Poisson’s equation, respectively [20].

Browsing the literature, theoretical guarantees are found
relatively scarcely. Furthermore, most scenarios assume a dis-
cretized setting. This can cause severe problems when dealing
with sources which are not located on the discretization grid
[21].

In this work, we will address these two issues. We pro-
pose to use ideas from infinite-dimensional (’off-the-grid®)
compressed sensing to attack the thermal source localization
problem. Although these methods are not per se new, this
is the first time it is applied to thermal source localization.
For this method, we are able to derive rigorous recovery
statements using the so-called soft recovery framework of one
of the authors [22]. We present and discuss the results of these
endeavors in Section II. In Section III, we sketch a heuristic
way of attentively discretizing the infinite-dimensional method
we propose and test it in several settings (in particular both
for one- and two-dimensional fields.)
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II. PROBLEM FORMULATION AND THEORETICAL
GUARANTEES

The governing equation for thermal propagation is the heat
equation:

{&ﬁu(t7 x) — Au(t, x)
u(0, x)

=0,te(0,T), x € R?
=, ¢ € R

(D

Here A = V2 = 92 + 02, is the Laplace operator and
ug 1is the initial heat distribution. Assuming point-like initial
(instantaneous) sources, it is reasonable to model ug as a short
linear combinations of J-peaks,

ug = po = »_ 0y, )
=1

where s € N, ¢? > 0 and p; € R? denote the number of
sources, their amplitudes and locations, respectively. For sim-
plicity, we will throughout the paper adopt the normalization
assumption > 0, ¢ = 1.

Using common inverse problem notions, p is the ground
truth signal we want to recover. The indirect measurements
from which we try to resolve pg are samples of the solution
of (1), say on a set S. Considering that, as is well known, the
solution of (1) is given as the convolution of the initial dis-
tribution with the Green function G(z,t) = (4mt)~le 212l
the measurements b are hence given by

o= ([ 6o-stduip)
R2 (z,t)€S
where S is a set of sampling points, whose structure we will
specify later. Let M denote the operator which maps pg to
the measurement vector b.

Considering the structure (2) of the ground truth signal,
recent findings in the field of infinite dimensional com-
pressed sensing (super-resolution) [23], [24] suggest that T'V -
minimization should be used to recover it, where the T’V -norm
is defined as:

N
lullrv = sup Z lu(Us)l;
UL, Ui=R* ;21
U; disjoint.
As an example, the total variation norm of the measure pg as
in (2) is equal to ||c||;. Hence, one can intuitively view the TV
norm as the infinite dimensional version of its counterpart ¢;-
norm in the discrete setting. Therefore, in the noiseless case,
the program

(Prv)

suffices. In the case of b being contaminated with noise, one
should instead use a regularized version of the above problem,

e.g.

min ||u||7y subject to My =b

min | M p — b||2 subject to ||u|lrv < p. (P

Note that the optimal choice of p = ||ug||7v. Since the TV-
norm of yg is most often unknown in practice, this is however
not feasible, so that one has to calibrate p.
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It is relatively easy to write down conditions which guar-
antee that the solution 4 of the problem (Prv) (or (P£y))
is equal (or close to, respectively) to ug sense (see e.g. [24]).
It is however too hard to rigorously check this condition, and
only a few examples of measurement operators where this is
explicitly possible exist in the literature (most are variations
of the ones considered in [23]).

Here, we instead aim to apply the soft recovery framework
of one of the authors [22]. This framework describes a
condition which guarantees that, for a specific peak p;, in
the ground truth (2), there is a peak in the solution of (Pry)
which is close to said peak. Although this statement is not as
strong as the ones described in the previous paragraph, it is
still of major importance, since it shows that an approximate
initial source positions recovery is possible.

The publication [22] does not cover the case of noisy
measurements. We are however able to extend the theory also
to this case, as is presented in the extended version of this
paper (see [25]).

Let us first describe the assumptions we need to make in
order to prove our main result.

e The peak p;, we wish to recover is located in the
rectangle [—1/2,1/2]2.

o The samples are all taken at a fixed time ¢ and spatially
on a uniform grid over [—1, 1]? with spacing % for some
m € N, ie.

ne{-m,..m}>. 3)

_(n n
T, = (54, 12),
The main result now reads as follows:

Theorem 1 (Main Result). Let t > 0 and suppose that

the sample set S has the structure (3) with m 2 (1 +

t_l/Q)(cgo)_l. Then if b = Mg, then for every minimizer

W of Prv, there exists a p, € supp p. with |pg — p*| <
- 0

\/4t~log (2/c2 ).

In fact, also in the case that b = M ug+e with ||e||2 < €, the
regularized problem (P3l,) for every p > 1 has the following
property: For every minimizer . of Pyi,, there exists a p, €
SUpp fi« With

A 62+ (p—1)) !
s | <L 14A] IR S U A .
Ip* — pi| < 0g<<2 3 )

Put shortly, the bound for the noiseless case deteriorates
gracefully with a non-optimal choice of p and increasing noise
level.

Theorem 1 provides a lower bound on the number of
measurements d = m? needed to secure approximate recovery
of the source positions. The bound grows with increasing ¢
and decreasing amplitude c;,. This makes sense: the smaller
c?o is, the less significant is the peak and an increasing
time ¢ leads to the thermal field ”smearing out, making the
reconstruction of p harder. Also note that the bound on the
source reconstruction precision deteriorates with increasing

time and decreasing amplitude, due to the same reasons.
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Note that if all peaks are equally large, ¢; ! exactly equals
the sparsity s of the signal (remember that we assumed > _ ¢; =
Dm 2 e, ! hence corresponds to d > s2, which unfortunately
(in contrast of a linear dependence), is sub-optimal. This may
well be an artifact of the proof, as may be the quality of
the source reconstruction precision. We leave the question of
whether an improvement is possible as an open problem.

Let us conclude this section by briefly commenting on
the proof of Theorem 1 (a detailed proof is provided in
the extended version of this paper [25]). To prove that the
condition described in [22] is satisfied, one needs to con-
struct a function lying in the range of the operator M™,
ran M* = span (G(- — x,t),x,t € S), having certain prop-
erties - qualitatively, it needs to approximate the Gaussian
G(-—pi, t). Hence, the problem reduces to approximating the
latter using the functions G(- —x,t), (x,t) € S. This problem
can the further be transformed further into a Fourier series-
approximation problem. This final task can then be tackled
using classical techniques.

III. EXPERIMENTS

The method we propose is of infinite-dimensional nature. In
a few special cases (most notably for Fourier measurements
[23], but see also e.g. [26], [27]), it is possible to rewrite
the problem into a finite-dimensional one. In our case, it is
not clear if this is possible, whence we instead propose the
following heuristic:

For a grid X, we define the operator M x as the restriction of
M onto atomic measures with supports in X, or equivalently
the following map:

My RIS R™ ¢ Y e, M6,
rzeX

Note that the 7'V norm of a measure of the form ) __ ;6.
is equal to the ¢; norm of the vector ¢ € RIXI. Hence, the
problems (Pry) and (P4y;) have the following discretized
forms:

min ||c||; subject to Mxc =10

min || Mxc — b||2 subject to ||c|l1 < p.

Choosing the grid is a delicate matter. Hoping to keep the
size of X down while still putting many grid points in
proximity of the actual sources, we use the following iterative
approach: Starting with a coarse grid, we adaptively add
grid points as follows: At every iteration, we consider the
dual problem to our discretization procedure. The solution
to that problem induces a so-called dual certificate. For the
infinite dimensional problem, the locations of the §-peaks in
a solution i, = >0, cj 0y are given as the set of points x;
for which the dual certificate v has absolute value 1. Hence,
by considering points in which the discrete dual certificate is
large, we get an idea of where the actual peaks of the solutions
are, and consequently add grid points close to them (See also
figure 1).
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Fig. 1. As it can be seen, the points are selected based on the threshold which
put on the peak solutions of the dual problem. The system model dictionary
matrix is refined for the next iteration by adding extra atoms corresponding
to these points.

The dual problem of the non-regularized problem (Pry )
has a closed form:

max Re{< b,p >} subject to | Mxplloc <1. (Ppual,TV)
p
This is no longer the case for the problem P%. [28]. There-
fore, we deviate a bit from the theory presented above and
instead, as is usual, consider the following, unconstrained
version of the LASSO:

c* chin%HMXc_bH%‘i‘)‘HcHl- 4)

It is well known that for each parameter p, there is a A such
that the solution of (P4y) is equal to the one of (Prasso)
[29, Theorem B.28, p.562]. Considering the fact that the
parameter p (or A, respectively) anyhow needs to be fine-
tuned, making this transition is justified. The dual problem
of (Prasso) again has a simple form:

mpin |2 — pl|2 subject to || Mxp|loo < 1. (5)

Repeating the above procedure until a stopping criterion (of
one’s choice) is satisfied, we arrive at a final dual certificate
Vfinal- The points X = (z;)?_; where this function has
absolute value one are the estimates of the source localization.
The amplitudes of the sources can then be directly estimated
as (Mx)th, where (Mx )" denotes the Moore Penrose inverse
of the operator M restricted to measures supported on the set
X.

For the one-dimensional case, we conveniently use CVX
[30], [31] to solve the optimization problem. Due to problems
with e.g. storage in the two-dimensional setting, we instead
use the primal-dual method [32] (since it in particular only
needs matrix multiplications to be implemented as operators).
The final grid is found by computing the local maximal points
of the final certificate |Vf;nq|, using gradient descent.

Figure 2 compares the performance of proposed method
with the method proposed in [33]. The authors in [33] pro-
posed a bound for sampling density which makes the forward
operator well-conditioned, allowing the use of compressed
sensing machinery to solve the inverse problem. In order to
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Algorithm 1: Summary of the method we propose

Data: A measurement operator M : M — R?, and
(noisy) measurements b € R?.
Result: An estimate ., of a sparse approximate solution
to My ="b.

1 Initialize a course grid X.

repeat
2 | Find a solution p to the dual problem of (Pry) or
(Prasso), respectively (depending on whether b is
contaminated with noise or not), discretized to the
grid X.
3 Find points (¢;)7_; in which v = M¥%p has large
absolute value.
4 Refine X by adding points close to (g;)i_,

until Stopping condition satisfied,
5 Use final dual certificate to define final grid X,
6 Output pu, = (Mx, )b

— Original Source

05 -

T
—o Proposed Method

05 -

Method Proposed in [33]

50 4

Fig. 2. The source localization performance results in a noisy scenario with
SNR= 40dB. In the experiment, the sampling density, p is chosen in the
middle of the bound described in [33].

have a fair comparison, we select the sampling density in
the middle of proposed bound in [33] and we carry our the
experiment in one dimensional noisy setting with the signal to
noise ratio (SNR) SNR = 40 dB. Here, we define the SNR as
the power of signal divided by the power of noise. As it can
be seen the peak obtained using proposed method is almost
close to the ground truth, while the reconstruction performance
in [33] shows a period signal with a range between —100 to
100 due to the ill-conditioning property of the Green function.
Figure 3 demonstrates the performance of the method in the
case of two dimensions for different noise levels. The first row
shows the performance of the method in (a) SNR= 0 dB, (b)
SNR= 10 dB and (c) SNR= 20 dB. As it can be seen, the
method shows a good performance even in low SNR regions
like 0 dB, and the localization performance is getting close
to being exact as we increase the SNR. For having a better
understanding of the performance of the proposed method in
SNR= 0 dB, the second row illustrates (d) the original thermal
field, (e) the course and noisy version of the thermal field
which is captured by sensors and (f) the reconstructed filed
using proposed method. The 2D view of this reconstruction
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for SNR= 0 dB is also demonstrated in figure 4.

IV. CONCLUSION

In this paper, our aim is to exploit the infinite dimensional
compressed sensing theory to solve thermal source localization
problem. By utilizing soft recovery framework and its exten-
sion to noisy scenarios, we provided mathematical guarantees
for showing that the placements of the thermal sources will be
approximately recovered by our method. Based on the theory
and its implementation, we can address different challenges,
such as an insufficient number of spatiotemporal samples,
high-coherent structure the measurements, discretization errors
and finally off-grid sources positioning. Theoretically analyz-
ing the convergence properties of the proposed algorithm, as
well as experimentally test its performance on real data, are
questions that should be addressed in future work.
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