
A Proximal Method for Convolutional Dictionary
Learning with Convergence Property

Guan-Ju Peng
Department of Applied Mathmatics
National Chung Hsing University

South District, Taichung City 40227, Taiwan
Email: gjpeng@email.nchu.edu.tw

Abstract—The convolutional sparse coding (CSC) is superior
in representing signals, and to obtain the best performance of
CSC, the dictionary is usually learned from data. The so-called
convolution dictionary learning (CDL) problem is therefore for-
mulated for the purpose. Most of the solvers for CDL alternately
update the coefficients and dictionary in an iterative manner,
and as a consequence, numerous redundant iterations incur slow
speed in achieving convergence. Moreover, their convergence
properties can hardly be analyzed even though the `0 sparse
inducing function is approximated by the convex `1 norm. In
this article, we propose an algorithm which directly deals with
the non-convex non-smooth `0 constraint and provides a sound
convergence property. The experimental results show that, the
proposed method achieves the convergence point with less time
and a smaller final function value compared to the existing
convolutional dictionary learning algorithms.

I. INTRODUCTION

Given the data signals tylu and the dictionary elements
tdmu, convolutional sparse representation represents a signal
yl as follows:

yl “
ÿ

m

dm ˚αl,m, (1)

where αl,m is the coefficient map for dm to approximate yl.
The set of coefficient maps, denoted by tαl,mu, can be derived
by solving the convolutional sparse coding (CSC) problem,
which is defined as follows:

arg min
tαl,mu

1

2
}yl ´

ÿ

m

dm ˚αl,m}2F `
ÿ

m

Ωpαl,mq, (2)

where Ω is the sparse inducing function. When Ω is the
`0 function, the greedy algorithms can be used to solve
CSC [1], [2]. In contrast, when the non-convex `0 function
is approximated by the convex `1 norm [3], [4], the con-
vex optimization algorithms, such as fast-iterative-shrinkage-
thresholding-algorithm (FISTA) [5] and feature-sign algorithm
[6], can be adopted to solve CSC. More algorithms solving
CSC using convex optimization can be found in [7], [8], [9].

To improve the performance of representing signals, one
of the major concerns for convolutional sparse representation
is the selection of dictionary. When the property of signals
is known and unchanged, a dictionary describing a fixed
morphology, such as wavelets [10] and curvelets [11], can
be used. In contrast, when there is no assumption on the
morphology of signals, the dictionary can be learned from

the received signals by solving the convolutional dictionary
learning (CDL) problem, which is defined as follows:

arg min
tαl,mu,tdmu

ÿ

l

t
1

2
}

ÿ

m

dm ˚αl,m ´ yl}2

`λ1

ÿ

m

Ωpαl,mqu ` λ2

ÿ

m

ΓCpdmq, (3)

where C denotes the unit-norm sphere (i.e., }dm} “ 1), and
ΓC is an indicator function defined as follows:

ΓCpxq “

#

0 if x P C,
8 otherwise.

(4)

The mainstream algorithms solve CDL in an iterative manner,
and each iteration comprises of two steps: convolutional sparse
coding step and convolutional dictionary updating step [7], [9],
[12]. In the first step, the dictionary is kept unchanged, and
the coefficient maps for each signal can be updated using the
algorithms for CSC. In the second step, the coefficient maps
derived in the first step is used to update the dictionary, and C,
a non-convex unit-norm sphere, is approximated by a convex
unit-norm ball (i.e., }dm} ď 1) such that convex optimization
algorithms can adopted to solve the dictionary updating step.

To improve the computational efficiency, convolution is
usually calculated in Fourier domain, and thereby two addi-
tional constraints, which are ΓCα and ΓCd , are inserted to the
CDL problem to maintain the equivalence of the variables in
the spatial and the Fourier domains. The resulting alternative
optimization problem of CDL can be formulated as follows:

arg min
tαl,mu,tdmu

ÿ

l

t
1

2
}

ÿ

m

dm ˚αl,m ´ yl}2

`
ÿ

m

λ1pΩ` ΓCαqpαl,mqu `

`
ÿ

m

tλ2pΓC ` ΓCdqpdmqu, (5)

where Cα and Cd are defined as follows:

Cα “ tα : pI´ PαPᵀ
αqα “ 0u, (6)

Cd “ tu : pI´ PdPᵀ
dqu “ 0u, (7)

and in accordance to the convolution theorem, Pα and Pd
respectively perform zero padding to coefficient maps and
dictionary elements.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1729

Most algorithms solving Equation (3) or (5) were built
under the framework of alternate optimization, where different
methods are deployed in either or both of the convolutional
sparse coding stage or the convolutional dictionary updating
stage [7], [8], [9], [12], [13], [14]. However, three major
artifacts are usually incurred by these algorithms:

1) Non-sparse representations: Approximating non-convex
constraints with convex ones may cause non-sparse rep-
resentations of signals, which usually hinders the perfor-
mance for applications [15].

2) Redundant iterations: When the dictionary and coefficient
maps are initialized at random, redundant iterations are
incurred by the alternate optimization and thus slower the
speed to convergence.

3) Missing convergence property: Although the convergence
can be obtained respectively for the first and second steps,
the global convergence properties of these algorithms are
still missing.

In the present paper, we try to resolve the above artifacts,
and our main contributions are summarized as follows:
‚ Based on forward-backward splitting, we propose an

algorithm, denoted by FB, to solve CDL involving non-
convex constraints. Unlike the mainstream algorithms
which adopt alternate optimization, our FB algorithm
jointly update the dictionary elements and coefficient
maps in each iteration.

‚ We demonstrate that FB has the convergence property.
‚ Numerical results demonstrate that FB outperforms the

existing methods with regard to convergence speed and
the final function value.

The reminder of this paper is organized as follows. In
Section II, we demonstrate our FB algorithm, and show its
convergence property. In Section III, we compare the proposed
method with the existing CDL algorithms with regard to the
convergence speed and the final function value. Section IV
gives the concluding remarks.

II. FORWARD-BACKWARD SPLITTING FOR
CONVOLUTIONAL DICTIONARY LEARNING WITH

NON-CONVEX CONSTRAINTS

We briefly review the non-convex forward-backward split-
ting framework, which is designed to solve problems of the
following form:

arg min
x

fpxq ` gpxq, (8)

where f is a non-convex C1 function whose gradient, ∇f ,
is Lipschitz continuous, and g is a non-convex, non-smooth,
proper closed function. Let Lf denote the global Lipschitz
constant of the gradient ∇f and assume there is a set tηtu
where 0 ă ηt ă

1
Lf

for all t. We consider a sequence txtu
satisfying the following equations:

gpxt`1q ` xxt`1 ´ xt,∇fpxtqy ` 1

2ηt
}xt`1 ´ xt}2

ď gpxtq, (9)

and

Dzt`1 P Bgpxt`1q, }zt`1 `∇fpxtq} ď ηt}xt`1 ´ xt}, (10)

where Bgpxt`1q denotes the subdifferential of f at xt`1. Then
we take into account of the following conditions:

Condition II.1. (Conditions of f and g).
1) f ` g is a proper closed function bounded from below,
2) f ` g is a Kurdyka-Łojasiewicz (KL) function,
3) f P r0,8q,
4) f is a C1 function with the global Lipschitz constant Lf ,
5) dom g is continuous.

The results in [16] show that if f and g satisfy the above
conditions, a sequence txtu satisfying Equations (9) and (10)
has the following convergence property:

1) txtu converge to a critical point of f ` g.
2) txtu has a finite length, i.e.

8
ÿ

t“1

}xt`1 ´ xt} ă 8. (11)

Furthermore, such kind of sequence can be generated using
the following equation in an iterative manner:

xt`1 Ð proxηtgpx
t ´ ηt∇fpxtqq. (12)

To formulate the objective function of CDL into the frame-
work in Equation (8), we let x “ ptdmu, tαl,muq and therefore
f and g can be respectively defined as follows:

fptdmu, tαl,muq “
1

2

ÿ

l

}
ÿ

m

dm ˚αl,m ´ yl}
2, (13)

and

gptdmu, tαl,muq “
ÿ

l

t
ÿ

m

λ1pΩ` ΓCαqpαl,mqu

`
ÿ

m

tλ2pΓC ` ΓCdqpdmqu (14)

Then we may generate the sequence ttdtmu, tαtl,muu using
Equation (12). We define the gradient of f as follows:

∇f :“ tt∇dmfu, t∇αl,mfuu, (15)

where ∇dmf and ∇αl,mf for each l and m can be calculated
as follows:

∇dafptdmu, tαl,muq
“

ÿ

l

pp
ÿ

m

dm ˚αl,m ´ ylq
ᵀpI ˚αl,aqq, (16)

and

∇αa,bfptdmu, tαl,muq

“ p
ÿ

m

dm ˚αa,m ´ yaq ˚ pI ˚ dbq. (17)

These gradients can be calculated in the Fourier domain to
improve the computational efficiency.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1730

We define the intermediate variables for each l and m as
follows:

dt`
1
2

m :“ dtm ´ ηt∇dmfptdmu, tαl,muq, (18)

α
t` 1

2

l,m :“ αtl,m ´ ηt∇αl,mfptdmu, tαl,muq. (19)

Then the variables used in the following iteration are calcu-
lated as follows:

ptdt`1
m u, tαt`1

l,m uq “ proxηtgptd
t` 1

2
m u, tα

t` 1
2

l,m uq, (20)

where proxηtg can be calculated using the derivation in
Appendix. Then we may formulate our FB algorithm in
Algorithm 1.

Algorithm 1 FB for the CDL problem.

Require: initial dictionary, td0
mu; initial coefficient maps,

tα0
l,mu; training signals, tylu; and descent parameter, η;

Ensure: learned dictionary, tdtmu; learned coefficients,
tαtl,mu;

1: tÐ 0.
2: repeat
3: ηt Ð η

4: Compute ptdt`
1
2

m u, tα
t` 1

2

l,m uq from ptdtmu, tαtl,muq us-
ing Equations (18) and (19).

5: Compute ptdt`1
m u, tαt`1

l,m uq from ptdt`
1
2

m u, tα
t` 1

2

l,m uq

using Equation (21).
6: tÐ t` 1.
7: until convergence.
8: return tdtmu and tαtl,mu.

Theorem II.2 (Convergence of Algorithm 1). When the ob-
jective function of CDL is split into f and g as the definitions
in Equations (13) and (14), and η is set at a small enough
value, the sequence generated by Algorithm 1 converges to a
critical point and has a finite length.

The above theorem can be proved by showing that f and g
satisfy the properties listed in Condition II.1. Nevertheless, the
details are omitted due to the limitation of the paper length.

III. PERFORMANCE EVALUATION

In this section, we compare the following dictionary learn-
ing algorithms for convolutional sparse representation:
‚ ADMM-`1 denotes the method proposed in [12], where

the sparse inducing function Ω is the `1 norm.
‚ ADMM-`0 denotes the method proposed in [12], where

the sparse inducing function Ω is the `0 norm.
‚ AO denotes the method proposed in [7], where the sparse

inducing function Ω is the `0 norm.
‚ FB denotes the proposed method where the sparse induc-

ing function Ω is the `0 norm.
The performances of these algorithms are evaluated with
regard to the speed to achieve convergence and the final
function value.

A. Configuration of Learning Algorithms

ADMM-`1, ADMM-`0, and AO adopt the two-step al-
ternate optimization scheme. ADMM-`1 and ADMM-`0 use
ADMM in both of the steps, and the ADMM parameter is set
at 0.01. In AO, COD is used in dictionary updating while the
convolutional FIESTA is used in coefficient maps updating.
The parameter is set at 0.1 in the optimization procedures of
both steps. For the proposed FB, we set η at 0.01.

For all algorithms in the experiment, each entry of the initial
dictionary is generated using an i.i.d uniformly distributed
random variable. The entries of initial coefficient maps are
all set at 0.

For ADMM-`1 and ADMM-`0, total 200 iterations are
performed, and in each iteration, the coefficient maps and the
dictionary are respectively updated only once. For AO, only 33
iterations are performed because each iteration, where the first
15 internal iterations are performed in using FIESTA to update
the coefficient maps, and the second 15 internal iterations are
performed in using COD to update the dictionary, requires
much more time than the other methods. For our FB algorithm,
total 200 iterations are performed.

B. Data Preprocessing

The elements of tylu are obtained from natural images. As
the method used in [17], each image is decomposed into a high
frequency component and a low frequency component using a
low pass filter, and only the high frequency part is used to learn
the convolutional dictionary. After the decomposition, each
high frequency component is normalized using the Frobenius
norm, and therefore the entry values range from 0 to 1.

In our experiment, tylu contains 10 normalized high fre-
quency components extracted from 10 grey scale images of
256 ˆ 256 pixels. The dictionary tdmu contains 32 or 64
elements, and the size of each element can be 8ˆ8 or 16ˆ16.

C. Experimental Results

In the experiment, we compare the performances of
ADMM-`1, ADMM-`0, AO, and FB with regard to computing
time and final function value. In calculating the function value,
Ω is the `0 norm.

Table I demonstrates the final function values and the
computing times of the comparable methods using different
settings of dictionary size and Lagrangian parameter. Note
that for each setting, 100 trails are executed with different
random initial dictionaries, and the average of these trails are
shown in the table. The results indicate that compared to the
other methods, the proposed FB achieves the point with the
smallest final function value and in doing so takes less than
half computing time.

In Figure 1, we demonstrate the value of logpf ` gq in
each iteration during the dictionary learning procedure. The
proposed FB approach is very stable and getting close to the
convergence point after performing only few iterations. FB
also has the smallest function values in all iterations.

The AO approach also generates a stable sequence including
decreasing function values. However, the speed of decrement

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1731

TABLE I
COMPARISON OF FINAL FUNCTIONAL VALUES & COMPUTING TIMES.

(a) λ1 “ 0.005 (left), and λ1 “ 0.01 (right)
32, 8ˆ 8 f ` g Time

(s)
ADMM-`1 4814 719
ADMM-`0 5391 889
AO 8101 728
FB 4445 331
64, 8ˆ 8 f ` g Time

(s)
ADMM-`1 5359 1443
ADMM-`0 6245 1737
AO 7616 1417
FB 4343 638
32, 16ˆ 16 f ` g Time

(s)
ADMM-`1 4178 763
ADMM-`0 3327 938
AO 5266 771
FB 2660 327
64, 16ˆ 16 f ` g Time

(s)
ADMM-`1 4279 1443
ADMM-`0 5146 1748
AO 4762 1409
FB 2167 638

32, 8ˆ 8 f ` g Time
(s)

ADMM-`1 8202 723
ADMM-`0 7649 885
AO 9557 721
FB 4683 323
64, 8ˆ 8 f ` g Time

(s)
ADMM-`1 9222 1450
ADMM-`0 8167 1795
AO 7957 1428
FB 4393 680
32, 16ˆ 16 f ` g Time

(s)
ADMM-`1 7005 722
ADMM-`0 4994 865
AO 6173 709
FB 2740 323
64, 16ˆ 16 f ` g Time

(s)
ADMM-`1 7394 1445
ADMM-`0 6578 1736
AO 5079 1409
FB 2843 652

(b) λ1 “ 0.05 (left), and λ1 “ 0.1 (right)
32, 8ˆ 8 f ` g Time

(s)
ADMM-`1 28024 725
ADMM-`0 6554 866
AO 13762 706
FB 5582 315
64, 8ˆ 8 f ` g Time

(s)
ADMM-`1 28726 1465
ADMM-`0 7288 1738
AO 12564 1407
FB 6119 631
32, 16ˆ 16 f ` g Time

(s)
ADMM-`1 19808 720
ADMM-`0 6269 864
AO 7209 706
FB 5252 315
64, 16ˆ 16 f ` g Time

(s)
ADMM-`1 22013 1433
ADMM-`0 6968 1727
AO 6061 1408
FB 5963 631

32, 8ˆ 8 f ` g Time
(s)

ADMM-`1 37283 723
ADMM-`0 6826 871
AO 12787 708
FB 6160 315
64, 8ˆ 8 f ` g Time

(s)
ADMM-`1 39154 1446
ADMM-`0 6900 1741
AO 12414 1411
FB 6378 649
32, 16ˆ 16 f ` g Time

(s)
ADMM-`1 29046 718
ADMM-`0 6773 865
AO 7391 704
FB 5981 317
64, 16ˆ 16 f ` g Time

(s)
ADMM-`1 27903 1441
ADMM-`0 6888 1734
AO 6683 1410
FB 6062 627

is slow owing to the redundant iterations. Compared to the
other methods, using ADMM-`1 in the dictionary learning
procedure causes much larger function values because the
`1 function, which is used as the approximation of the `0
norm, usually causes non-sparse representations of real-world
signals. In contrast, although ADMM-`0 deals with the `0
constraint directly, it is unable to generate a sequence of
decreasing function values. In fact, the sequence of function
values generated using ADMM-`0 is very unstable, and even
more iterations are performed, it can result in a worse dictio-
nary.

IV. CONCLUDING REMARKS

The mainstream algorithms adopted the two-step alternate
optimization scheme to solve the dictionary learning problem
for convolutional sparse representation. However, such kind of
scheme may cause redundant internal iterations and therefore
reduced the speeds of these algorithms to achieve convergence.
Moreover, these algorithms dealt with the problem where non-
convex constraints were approximated with convex ones. This
meant that the `0 constraint imposed on the coefficients was
approximated by the `1 function, and the unit-norm sphere
constraint imposed on the length of dictionary element was
approximated by the unit-norm ball. When handling real-
world signals, non-sparse representations were usually caused
by these algorithms, and thus hindered the performances of
signal processing applications. In this paper, we proposed an
approach called FB to directly solve the convolutional dictio-
nary learning problem involving the non-convex constraints.
The proposed FB adopted the forward-backward splitting
framework because we found that the objective function of
the convolutional dictionary learning problem met the require-
ments of the framework to obtain the convergence property. In
the experiments, we compared the performances of the existing
methods with FB with regard to the final function value and
the computing time, and the results indicated that the proposed
FB outperformed the other methods in all cases. In our future
work, we will extend FB using parameter adaption to further
improve the speed of the algorithm to achieve convergence.

APPENDIX

The definition of the proximal mapping (denoted by prox)
can be found in [16], and thereby proxηtg can be further split
as follows:

proxηtgptd
t` 1

2
m u, tα

t` 1
2

l,m uq “

ptproxηtλ2pΓC`ΓCd q
pdt`

1
2

m qu, tproxηtλ1p}¨}0`ΓCα q
pα

t` 1
2

l,m quq,

and if we consider the properties of the constraint functions
composing g, their proximal mappings can be further decou-
pled as follows:

proxηtλ2pΓC`ΓCd q
“ proxΓC

˝ proxΓCd
, (21)

proxηtλ1p}¨}0`ΓCα q
“ proxηtλ1}¨}0

˝ proxΓCα
. (22)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1732

The proximal mapping of an indicator function with regard to
a closed set is the projection to that set, and therefore proxΓCd

,
proxΓCα

, and proxΓC
can be calculated as follows:

proxΓCπd
pxq “ PdPᵀ

dpxq, (23)

proxΓCπα
pxq “ PαPᵀ

αpxq, (24)

proxΓC
pxq “

x
}x}2

, if x ‰ 0. (25)

Note that PdPᵀ
dpxq and PαPᵀ

αpxq can be obtained by en-
forcing the values of padded positions to be zeros. Let
x “ px1, x2, ¨ ¨ ¨ , xN q P RN , and then proxηtλ1}¨}0

pxq can
be further decoupled as follows:

proxηtλ1}¨}0
pxq “ pproxηtλ1|¨|0

px1q, ¨ ¨ ¨ , proxηtλ1}¨}0
pxN qq, (26)

where for the scalar x P R, proxηtλ1|¨|0
pxq is calculated as

follows:

proxηtλ1}¨}0
pxq “

$

’

&

’

%

x if |x| ą
?

2ηtλ1

tx, 0u if |x| “
?

2ηtλ1

0 otherwise.

REFERENCES

[1] A. Szlam, K. Kavukcuoglu, and Y. LeCun, “Convolutional matching
pursuit and dictionary training,” Computer Research Repository (arXiv),
2010.

[2] Q. Barthélemy, A. Larue, A. Mayoue, D. Mercier, and J. I. Mars, “Shift
& 2d rotation invariant sparse coding for multivariate signals,” IEEE
Transactions on Signal Processing, vol. 60, no. 4, pp. 1597–1611, 2012.

[3] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Transactions on Information Theory, vol. 47,
no. 7, pp. 2845–2862, 2001.

[4] V. Papyan, J. Sulam, and M. Elad, “Working locally thinking globally:
Theoretical guarantees for convolutional sparse coding,” IEEE Transac-
tions on Signal Processing, vol. 65, no. 21, pp. 5687–5701, Nov 2017.

[5] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[6] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Proceedings of the 19th International Conference on
Neural Information Processing Systems, ser. NIPS’06. Cambridge, MA,
USA: MIT Press, 2006, pp. 801–808.

[7] R. Chalasani, J. C. Principe, and N. Ramakrishnan, “A fast proximal
method for convolutional sparse coding,” in Neural Networks (IJCNN),
The 2013 International Joint Conference on. IEEE, 2013, pp. 1–5.

[8] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse
coding,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 391–398.

[9] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 5135–5143.

[10] S. Mallat, A wavelet tour of signal processing. Academic Press, 1998.
[11] E. Candes, L. Demanet, D. Donoho, and L. Ying, “Fast discrete curvelet

transforms,” Multiscale Modeling & Simulation, vol. 5, no. 3, pp. 861–
899, 2006.

[12] B. Wohlberg, “Efficient algorithms for convolutional sparse represen-
tations,” IEEE Transactions on Image Processing, vol. 25, no. 1, pp.
301–315, 2016.

[13] H. Bristow and S. Lucey, “Optimization methods for convolutional
sparse coding,” arXiv preprint arXiv:1406.2407, 2014.

[14] I. Y. Chun and J. A. Fessler, “Convolutional dictionary learning: Ac-
celeration and convergence,” IEEE Transactions on Image Processing,
vol. 27, no. 4, pp. 1697–1712, April 2018.

[15] T. Zhang, “Analysis of multi-stage convex relaxation for sparse regular-
ization,” Journal of Machine Learning Research, vol. 11, no. Mar, pp.
1081–1107, 2010.

[16] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward–
backward splitting, and regularized gauss–seidel methods,” Mathemati-
cal Programming, vol. 137, no. 1-2, pp. 91–129, 2013.

[17] H. Zhang and V. M. Patel, “Convolutional sparse and low-rank coding-
based rain streak removal,” in Applications of Computer Vision (WACV),
2017 IEEE Winter Conference on. IEEE, 2017, pp. 1259–1267.

50(8) 100(17) 150(25) 200(33)
Iterations

8

9

10

11

12

lo
g
(F

u
n
c
ti
o
n

V
a
lu
e
)

32, 8× 8

ADMM-ℓ1
ADMM-ℓ0
AO
FB

50(8) 100(17) 150(25) 200(33)
Iterations

8

9

10

11

12

13

lo
g
(F

u
n
c
ti
o
n

V
a
lu
e
)

64, 8× 8

ADMM-ℓ1
ADMM-ℓ0
AO
FB

50(8) 100(17) 150(25) 200(33)
Iterations

7

8

9

10

11

12

lo
g
(F

u
n
c
ti
o
n

V
a
lu
e
)

32, 16× 16

ADMM-ℓ1
ADMM-ℓ0
AO
FB

50(8) 100(17) 150(25) 200(33)
Iterations

8

9

10

11

12

13

lo
g
(F

u
n
c
ti
o
n

V
a
lu
e
)

64, 8× 8

ADMM-ℓ1
ADMM-ℓ0
AO
FB

Fig. 1. Comparison of logpf ` gq and iteration number in the dictionary
learning procedure. λ1 is set at 0.01. 200 iterations are performed for
ADMM-`1, ADMM-`0, and FB, while only 33 iterations is performed for
AO.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1733

