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Abstract— Obstructive sleep apnea (OSA) is a sleep disorder in 
which pharyngeal collapse during sleep, causes a complete or partial 
airway obstruction. OSA is common and can have severe impacts, but 
often remains unrecognized. In this study, we propose a novel method 
which able to detect OSA subjects while they are awake, by analyzing  
breathing sounds during speech. The hypothesis is that OSA is 
associated with anatomical and functional abnormalities of the upper 
airway, which in turn, affect the acoustic parameters of a natural 
breathing sound during speech. The proposed OSA detector is a fully 
automated system, which consists of three consecutive steps 
including: 1) locating breathing sounds during continuous speech, 2) 
extracting acoustic features that quantify the breathing properties, 
and 3) OSA/non-OSA classification based on the detected breathing 
sounds. Based on breathing sounds analysis alone (90 male subjects; 
72 for training, 18 for validation), our system yields an encouraging 
results (accuracy of 76.5%) showing the potential of speech analysis 
to detect OSA. Such a system can be integrated with other non-contact 
OSA detectors to provide a reliable and OSA syndrome-screening 
tool. 

Keywords—Obstructive sleep apnea (OSA), speech signals, 
breath signals, signal processing, machine learning 

I.  INTRODUCTION 

Obstructive sleep apnea (OSA) is defined as a repetitive 
collapse of the upper airways during sleep, characterized as a 
complete (apnea) or partial (hypopnea) collapse, while 
respiratory effort persists. OSA usually involves snoring and 
choking, and causes frequent awakenings, disrupted sleep, and 
excessive daytime sleepiness [1]. As the disorder progresses, 
sleepiness encroaches into all daily activities and can become 
disabling and dangerous. Accordingly, OSA has been shown to 
increase the risk of car accidents [1]. In addition, OSA can cause 
morning headaches, dry mouth and sore throat when 
awakening. When left untreated, OSA can even cause 
cardiovascular and neurocognitive disorders, such as heart 
failure, stroke, mood disorders, and hypertension [1]. 

OSA severity is defined by the number of obstructive apnea 
and hypopnea events per hour of sleep, which is known as the 
apnea-hypopnea index (AHI) [2]. 

Polysomnography (PSG) is a clinical procedure performed 
overnight and is currently accepted as a gold standard diagnostic 
assessment for OSA. The PSG monitors a number of body  

functions such as brain wave activity (EEG) and heart wave 
activity (ECG). The sensor that is usually used for detecting 
OSA is an oronasal thermal sensor, which detects both nasal and 
oral airflow [3]. Although PSG can provide an accurate 
assessment of the disorder, it is considered an expensive test for 
the health care system and inconvenient for patients. Moreover, 
due to the inconvenience caused to the patients, sleep habits are 
disrupted, leading to biased results. Hence, 75–80% of OSAs 
remain undiagnosed [4]. 

Earlier studies have already shown that OSA patients have 
anatomical and functional abnormalities of the upper airway 
that may affect their speech [5, 6]. Furthermore, in [7] it was 
noted that experienced speech pathologists were able to identify 
speech abnormalities in patients with OSA. As a result of those 
conclusions, a few studies were correspondingly made to try and 
find an objective acoustic analysis that could distinguish OSA 
from speech signals, rather than relying on a subjective 
assessment by an experienced listener [8-10]. 

The primary goal of the current study is to develop an 
alternative, non-invasive, and portable OSA monitoring tool 
that will be used to analyze the patient’s speech while awake. 
This tool should estimate and predict OSA severity from a short 
speech prior to bedtime. Such a tool may increase accessibility, 
and decrease the percentage of undiagnosed cases. 

In [10], subjects were recorded in a sitting position while 
emitting a series of sustained phonemes. Afterwards, the 
subjects were recorded reading a one-minute speech protocol 
spoken in Hebrew [11]. In a recently performed study [12], a 
system was built using a fusion of three different subsystems for 
speech signal analysis, combined with the subject’s BMI and 
age. These subsystems included the exploitation of short-term 
and long-term acoustic features of continuous speech, as well as 
features of sustained vowels, in order to extract the relevant 
information from the speech signals. 

The structural and physiological changes that are associated 
with OSA, such as narrower and more collapsible pharynx, 
were expected to affect the breathing sounds within a speech 
signal. Breathing is the process that moves air in and out of the 
lungs, to allow the diffusion of oxygen and carbon dioxide. 
Some notable differences between the breathing sounds of 
people with different degrees of OSA severity during 
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wakefulness have been shown in [13]. The research analyzed 
only the tracheal breath sounds at medium flow rate (without 
any talking). The novelty of this study is in its use of the 
spontaneous breathing sounds within a continuous speech 
signal to estimate OSA in order to, eventually, integrate this 
approach into spontaneous speech.  

II. METHODS 

A. Experimental Setup 

The database for this study comprised three subsets and 
includes 100 male speech signals in total. The first subset 
includes 66 subjects who were referred to the Sleep-Wake Unit 
(Soroka University Medical Center) for a PSG study in order to 
evaluate their sleep disorders. The second subset consists of 24 
subjects who were sent by the Sleep-Wake Unit to have at-home 
OSA evaluation using WatchPAT 200 (Itamar Medical Ltd., 
Israel) [14]. The third subset consists of 10 students from Ben-
Gurion University of the Negev who volunteered to participate 
in the research using WatchPAT evaluation. Table 1 shows 
subjects' characteristics. 

Each of the 100 participants was recorded using a digital 
audio recorder (Zoom H4 handy recorder) while reading a text 
protocol in Hebrew. The digital signals were recorded using a 
sampling rate of 44.1 kHz (PCM, 16 bits/sample). Afterwards, 
each subject underwent an overnight sleep study using PSG or 
WatchPAT to assess the ground truth AHI score.  

The Institutional Review Committee of Soroka Medical 
Center (Helsinki Committee) and the Human Subjects Research 
Committee of Ben Gurion University approved the study 
protocol.  

B. Breathing Detection 

After receiving a recording of the speech signals, an analysis 
was performed to extract only breathing sounds. In order to 
maintain uniformity among breathing sounds across 
participants, four identical sentences from the speaking protocol 
were chosen. 

The algorithm in this section is a modified version of the 
detector presented in [15], and was adjusted to better capture 
breathing sounds during speech. A block diagram of the 
breathing detection system is given in Fig. 1 and detailed in the 
following steps:  

Pre-processing: Audio signal of speech was first divided 
into 10 msec sub-frames (hamming window, no overlaps) and 

hence defined the temporal resolution of the detector. Let denote 
these sub-frames as xi. Each sub-frame was then underwent a 
DC removal and pre-emphasis filtering (transfer function: 
H(Z)=1-0.95Z-1). 

To automatically detect breathing sounds from a continuous 
speech signal, it was first necessary to define the breathing 
sounds manually. Manual segmentation was used as the true 
label and was used to train a breathing model. In order to make 
the technique simple, the breathing sounds were to be the same 
length; hence a 120 msec segment from the center of each 
breathing sound was used. This will be referred to as the 
“breathing segment”. This length was chosen because it was the 
shortest breathing sound that was segmented. 

Feature extraction: Three features were extracted from 
each sub-frame. These features were specifically designed to 
measure either the distance of the sub-frame to (pre-defined) 
breathing model (two features in total), or the distance to the 
background noise template (one feature).  

To be consistent with the length of the breathing segment, 
for the first two features, a “tested frame” was defined as 12 sub-
frames (120 msec). For each breathing segment and tested 
frame, a MFCC matrix was obtained in which the columns were 
the sub-frame numbers, and the rows were the coefficient 
numbers. The MFCC matrix of a tested frame was denoted by
Y . The breathing model was estimated by calculating MFCC’s 

mean ( T ) and variance ( V ) across all breathing segments. 

Then, the normalized difference matrix ( D ) between the 
breathing model and the tested frame, was computed, according 
to the following equation: 

-
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Eventually, the first similarity measure ( pc ) which was used as 

the first feature, was computed according to the following 
equation:  
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where n is the number of frames and cN is the number of 

MFCCs computed for each frame. Due to the inverse operator 
in the equation, the more similar the tested frame was to the 
breathing model, the higher this feature. 

In addition, the singular value decomposition (SVD) on the 
concatenation MFCC matrices of the breathing segments was 

TABLE 1. Subjects’ characteristics. 

Database Diagnosis Subjects AHI Age BMI 

Training Healthy 38 4.78±2.49 38.16±15.44 28±4.94 

 OSA 34 29.97±18.36 52.60±13.81 30.05±4.54 

Testing Healthy 9 4.26±2.32 36±13.24 26.67±4.52 

 OSA 9 25.98±15.95 57.93±12.1 29.98±4.25 

Values are presented as mean ± std.  
* Ten subjects were excluded, see Result section B for more information. 

 

 

Figure 1. Block diagram of the breathing detection system. 
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computed. Then, the normalized singular vector ( sv ) 
corresponding to the largest singular value was derived.  

The second similarity measure ( nc ), which was used as the 

second feature, was computed by taking the sum of the inner 
products between the singular vector and the columns of the 
MFCC matrix of the tested frame, according to the following 
equation:   

1

,
n

n j

j

c
=

= < >å sv Y   (3) 

Since the singular vector was expected to capture the most 

essential features of the breath sound, nc was expected to be 

high when the frame contains information of breathing sounds. 

The third feature was the spectrum distance from the 

background noise (
idc ). In order to increase the separation 

between the breathing sounds and the background noise, a 
spectrum distance between the sub-frame and the background 
noise of the continuous speech signal was performed. The 
spectrum of each sub-frame was calculated using:

ln(| ( ) |)i iFFT=s x . In order to get the background noise 

representation for each utterance, the energy for each sub-frame 
was calculated and the lower percentile was considered as the 
background noise frames. The mean vector of those frames’ 
spectrum was defined as the background noise spectrum ( n ). 
Then the mean square error (MSE) of each sub-frame from the 
background noise representation was calculated. Because each 
speech signal had different background noise, we normalized 
each frame value by the 80th percentile of the values in the signal 

( 80 ( )dp c ), formulated as follows: 

2

80

[( ) ]

( )i

i

d

d

E
c

p c

-
=

n s
   (4) 

Classification: Each sub-frame got a classification decision, 
defining whether it was a breathing frame or not, i.e., frame by 
frame decision. In the training phase, the three features, i.e., the 
similarity measures and the distance from background noise, 
were fed into a feedforward neural network (NN) along with a 
manual labeling for breathing/non-breathing. This NN 
contained 1 hidden layer with 10 hyperbolic tangent sigmoid 
neurons and output layer of softmax function for two classes 
(breathing/non-breathing). A cross-entropy loss function with 
weighted errors was chosen for the training procedure, in order 
to overcome the inequality proportions of frames: 
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where N is the total number of sub-frames for the design dataset, 
and Bool is the Boolean operator resulting in "1" if the statement 
is true.  

Post-processing: The assumption is that the shortest 
breathing sound was 120 msec. For that reason, after getting the 
decision for each sub-frame, a 12th-order one-dimensional 

median filter on the decision vector was applied, in order to 
smooth the results. 

C. OSA Classifications 

After locating the breathing sounds (section B), an OSA 
estimation was performed using only the isolated breathing 
sounds. To avoid over-fitting, the database was divided into two 
separate datasets: a training set (80%) and a test set (20%). A 
block diagram of the developed system is given in Fig. 2 and 
detailed in the following steps:  

Pre-processing: Each breathing sound was framed into 30 
msec frames with an overlap of 75% (10 msec frame rate) after 
the DC removal step. 

Feature extraction: To investigate features suitable for 
classification between OSA and non-OSA, features such as 
different energy manipulations and MFCC were calculated. The 
feature list is given in Table 2. Since the number of breathing 
sounds is generally different between subjects, we apply several 
mathematical and statistical calculations over the detected 
breathing sounds including: mean (average of each feature), 
median, 90th percentile, std, skewness, kurtosis, and the 
features of the most energetic breathing sound. Eventually, each 
subject had a feature vector with 104 features.  

Feature selection and classification: We used feature 
selection in order to choose the best discriminative features 
(among the extracted 104 features) and to avoid overfitting. In 
order to choose the features that identify the components of the 
audio signal that are good for estimating OSA, we used the 
forward feature selection algorithm [16] with 5-fold cross 
validation on the training set. The support vector machine 
(SVM) model with second order polynomial kernel was used 

TABLE 2. Extracted features  

(before adding statistical calculations). 

# Feature name 

Number 

of 

features 

1 Average energy normalized with the 

speech energy 
1 

2 Average energy normalized with the 

background noise energy 
1 

3 Average zero crossing rates (ZCR) 1 

4 Kurtosis 1 

5 Mel-frequency cepstral coefficients 

(MFCC) 
12 

6 Pitch peak 1 

 

 

Figure 2. Block diagram of the OSA classification system. 
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(both for the 5-fold cross validation and the final model), while 
the performance criterion determining the quality of the features 
was the average accuracy for all of the 5 models. 

III. RESULTS & DISCUSSION 

A. Breathing Detection 

Performance evaluation was conducted using the leave one 
out (LOO) method. As described, the system has three features 
that were extracted in order to distinguish breathing and non-
breathing sounds. A graphical example of a typical speech 
signal, as well as the features, is given in Fig.3. 

 As one can see from Fig 3, the breathing sounds have 
higher breathing similarity values and lower values of spectral 
distance from the background noise, as opposed to the speech 
sections, as expected.  

This study’s goal was to estimate OSA using breathing 
sounds taken from a continuous speech signal, meaning that if 
a non-breathing sound was mistakenly considered as a 
breathing (false positive), it could cause inaccurate results. 
Accordingly, the false positive rate should be as low as possible 
(high specificity is needed) even if it comes at the expense of a 
lower sensitivity.  

The breathing detector performance evaluation can be seen 
in Table 3. As can be seen, the sensitivity of the algorithm is 
lower than the specificity. As mentioned, high specificity is 
more essential because it is preferable to lose information and 
ignore some of the breathing sounds, than to include any non-
relevant information. 

B. OSA Classifications 

In the OSA classification procedure, the features are 
mathematical and statistical measures that rely on the 
assumption that each subject has more than one breathing 
sound; therefore, subjects with less than two detected breathing 
sounds were excluded. An additional reason for removing the 
data that included only one breathing sound was that it did not 
have enough information in it. For these reasons, data from 10 
subjects were excluded and the results refer to the 90 remaining 

subjects: 43 of them were OSA patients while the remaining 47 
were non-OSA subjects. To validate the system, the database 
was divided into two groups, the train and the test (see Table 
1). 

The feature selection used the average accuracy results of 
5-fold cross-validations that were only taken from the training 
set in order to choose the best features. After 1000 iterations, it 
was found that three features were chosen much more 
frequently than the others. These selected features are: kurtosis 
of the average energy, median of the seventh MFCC, and the 
std of average ZCR. 

Using only these three features, a new model was built 
using the features from the entire training set and was validated 
on the test set. The classification performance (Confusion 
matrix) can be seen in Table 4.  

As shown, the sensitivity of the classification system is 
55%, and the specificity is 100%. The average accuracy of the 
test set was 76.5%. In order to evaluate overtraining of the 
model, the average accuracy of the training set was calculated 
and found to be 76.0% as well.  

IV. CONCLUSIONS & FUTURE WORK 

In this study, a new method has been proposed that uses 
breathing sound analysis for OSA severity prediction during 
wakefulness. The structural and physiological changes 
associated with OSA were expected to differentiate the 
breathing sounds in the people with OSA compared to healthy 
people.  

The first step was to automatically detect breathing sounds 
within a continuous speech signal. The critical restriction was 
to give the OSA estimation system only the relevant 
information and not to consider a non-breathing sounds as a 
breathing sounds. Hence, a specificity of 93.7% and sensitivity 
of 59.7% were selected. 

After detecting all of the breathing sounds, an OSA 
classifier system was designed (OSA/non-OSA). Three 
features representing statistical measures on MFCC, energy, 
and ZCR were chosen for estimating the existence of OSA, and 
obtained 76.5% accuracy. 

Accordingly, it was concluded that the analysis of breathing 
sounds within speech signals of awake subjects could assist in 

TABLE 3. Breathing detection performance evaluations. 

Sensitivity 

[%] 

Specificity 

[%] 

Cohen’s 

kappa 

59.7 93.7 0.5 

 

 
Figure 3. Different signals/features (blue) and true labels (orange) – breathing 

sounds (higher value) and non-breathing sounds (lower value). A: Original 

signal. B: First similarity measure (cp). C: second similarity measure (cn). D: 

spectrum distance from the background noise (cd). 
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TABLE 4. Classification performance using the selected features. 

 

True Labels 

OSA Non-OSA 

System 

Output 

OSA 55% 0% 

Non-OSA 45% 100% 

   *Cohen’s kappa coefficient is 0.54 
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the assessment of OSA. These conclusions are encouraging and 
pave the way for a simple, non-invasive, and inexpensive 
screening tool for the people suspected of having OSA. 

In future research, a superior OSA detection system can be 
achieved by integrating breathing information with additional 
types of speech features such as freely spoken speech. The 
effect of body posture, and the hoarseness effect, should be 
addressed as well. In addition, to give these results better 
statistical validation, the database would need to be expanded. 
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