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Abstract—In this paper we calculate reassigned spectrograms
using the envelope of an arbitrary signal as matched window. We
show that the matched window then give the perfectly localized
reassignment for any time-translated and frequency-modulated
transient signal with corresponding envelope. The general ex-
pressions of the corresponding scaled reassignment vectors are
derived and the matched window reassignment is evaluated
for time-frequency localization as well as for classification. The
results show that the accuracy in time- and frequency location
is high also when the signal envelope deviates from the matched
window and when the SNR is reasonable large. The classification
performance based on the matched window reassignment and the
Rényi entropy is robust to signal envelope deviations as well as
to disturbing noise.

I. INTRODUCTION

The reassignment technique, with the aim to improve the

localization of a single time-frequency (TF) component and

to enhance the readability of the TF representation, is intro-

duced by [1]–[3]. The method reassigns signal energy to the

center of gravity, giving higher energy concentration at the

instantaneous frequencies of the signal. A similar method, the

synchrosqueezing transform by [4], related to the empirical

mode decomposition [5], reassigns all energy in frequency at a

certain time point. However these methods only work well for

longer chirps and constant frequency signals. Methods exist

that convert the possible non-linear instantaneous frequency

into a linear one and in [6] a nonlinear squeezing transform,

especially designed for weak signal detection, is proposed.

Short transient signals are often modeled with a Gaussian

envelope in time and TF based methods, such as Gabor

and wavelet based algorithms have been applied to a large

extent, for which the main aim is to find the analysis window

achieving the best TF resolution, [7], [8]. We have proposed

a method, where the reassignment procedure is rescaled to

achieve the perfectly localized spectrogram of a Gaussian en-

veloped oscillating transient [9]. Using the Gaussian function

window the TF concentration is superior to the usual reas-

signment, which in this specific case has been shown to give

a circle or an ellipse as a result [10]. The optimal concentration

increases the resolution performance beyond the lower bound

of the Gabor transform [11]. With use of this technique we

also estimate the parameters detailing oscillating Gaussian

functions in a two-step procedure [11], [12]. Additionally, we

have shown that the second Hermite function similarly can be

used as matched window with resulting perfect localization,

[13]. In this paper we show that perfect localization can be

achieved for any signal, using the scaled reassignment and a

matched window function.

In Section 2, the reassigned spectrogram is presented and

in Section 3 the novel case of matched window reassignment

is derived. Section 4 presents some simulations, especially for

disturbing noise and jittering in the parameters of the matching

windows. Section 5 concludes the paper.

II. REASSIGNED SPECTROGRAM

The short-time Fourier transform (STFT) of the signal x(t)
using the window h(t) where integrals run from −∞ to ∞ is

Fh
x (t, ω) =

∫
x(s)h∗(s− t)e−iωsds, (1)

and the corresponding spectrogram is found as

Sh
x (t, ω) = |Fh

x (t, ω)|2. (2)

The reassigned spectrogram, where the spectrogram values are

relocated to the corresponding t̂x and ω̂x, is defined as

RSh
x (t, ω) =

∫∫
Sh
x (s, ξ)δ(t− t̂x(s, ξ), ω − ω̂x(s, ξ))dsdξ,

(3)

where the two-dimensional Dirac impulse is defined as∫∫
f(t, ω)δ(t− t0, ω − ω0)dtdω = f(t0, ω0). (4)

Introducing the scaling factors ct and cω , the reassignment can

be computed as

t̂x(t, ω) = t+ ct�
(
F th
x (t, ω)

Fh
x (t, ω)

)
, (5)

ω̂x(t, ω) = ω − cω�
(
F

dh/dt
x (t, ω)

Fh
x (t, ω)

)
, (6)

where F th
x (t, ω) and F

dh/dt
x (t, ω) are STFTs of the signal

x(t), where t·h(t) and dh(t)/dt are used as window functions,

respectively. Further, �(•) and �(•) represents the real and

imaginary parts respectively. If ct and cω equals one the

relocation is identical to the usual reassignment, [2].
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III. MATCHED WINDOW REASSIGNMENT

A transient oscillating signal is defined as

y(t) = a(t− t0)e
iω0t+φ, (7)

where a(t) represents the envelope of the oscillation and φ is

the phase. As the quadratic class of distributions obey TF shift-

invariance, all further analysis can be restricted to x(t) = a(t),
with time- and frequency center t0 = ω0 = 0. We assume

that the window h(t) = x(−t). To find the reassignment

vectors the functions to be derived are accordingly Fh
x (t, ω),

F th
x (t, ω) and F

dh/dt
x (t, ω) in Eqs. (5,6). The STFT in Eq. (1)

is accordingly defined as

Fh
x (t, ω) =

∫
x(s)x(t− s)e−iωsds. (8)

With s = s1 + t/2 we get

Fh
x (t, ω) = e−iωt

2

∫
x(s1 +

t

2
)x(

t

2
− s1)e

−iωs1ds1

= e−iωt
2 R1(t, ω), (9)

where

R1(t, ω) =

∫
x(s1 +

t

2
)x(

t

2
− s1)e

−iωs1ds1, (10)

is real-valued as the expression x(s1+
t
2 )x(

t
2 −s1) is an even

function around s1 = 0 for all values of t. We also find

F th
x (t, ω) =

∫
x(s)(s− t)x(t− s)e−iωsds, (11)

where th(t) = tx(−t). Expanding the integral in Eq. (11) as

F th
x (t, ω) =

∫
x(s)(s− t

2
)x(t− s)e−iωsds− t

2
Fh
x (t, ω),

(12)

and further use the same replacement of variables as in Eq. (9)

we find

F th
x (t, ω) = e−iωt

2

∫
s1x(s1 +

t

2
)x(

t

2
− s1)e

−iωs1ds1 −

e−iωt
2
t

2
R1(t, ω)

= e−iωt
2 (I1(t, ω)− t

2
R1(t, ω)), (13)

where the function I1(t, ω) will be purely imaginary as

s1x(s1+
t
2 )x(

t
2−s1) is always an odd function around s1 = 0

independently of t. Accordingly the real part of the ratio in

Eq. (5) is

�
(
F th
x (t, ω)

Fh
x (t, ω)

)
= �

(
e−iωt

2 (I1(t, ω)− t
2R1(t, ω))

e−iωt
2 R1(t, ω)

)
,

where e−iωt
2 are canceled in the denominator and numerator.

As I1(t, ω) is purely imaginary, the real part will simplify to

�
(
F th
x (t, ω)

Fh
x (t, ω)

)
= − t

2
. (14)

For the STFT using the derivative of the window we have

dh(t)

dt
= −x′(−t), (15)

rendering

F
dh
dt
x (t, ω) = −

∫
x(s)x′(t− s)e−iωsds

= − 1

2π

∫
iνX(ν)X(ν + ω)eiνtdν, (16)

where X(ν) is the Fourier transform X(ν) =
∫
x(t)e−iνtdt.

With ν = ν1 − ω/2 the integral in Eq. (16) is expanded as

=
e−iωt

2

2π

∫
i(
ω

2
− ν1)X(ν1 − ω

2
)X(ν1 +

ω

2
)eiν1tdν1. (17)

We focus on

X(ν1 − ω

2
)X(ν1 +

ω

2
) = C�x (ν1, ω) + iC�x (ν1, ω), (18)

where C�x (ν1, ω) is an even function around ν1 = 0 indepen-

dently of ω and similarly C�x (ν1, ω) is always an odd function.

Then the integral

I2(t, ω) =
1

2π

∫
ν1X(ν1 − ω

2
)X(ν1 +

ω

2
)eiν1tdν1, (19)

will be purely imaginary. The integral

R2(t, ω) =
1

2π

∫
X(ν1 − ω

2
)X(ν1 +

ω

2
)eiν1tdν1, (20)

will not only be purely real-valued but also it will hold that

R2(t, ω) = R1(t, ω), as

R2(t, ω)

=
1

2π

∫
X(ν1 − ω

2
)X(ν1 +

ω

2
)eiν1tdν1

=
1

2π

∫
X(ν1 − ω

2
)

[∫
x(s)e−iω

2 se−iν1sds

]
eiν1tdν1

=
1

2π

∫ [∫
X(ν1 − ω

2
)eiν1te−iν1sdν1

]
x(s)e−iω

2 sds

=
1

2π

∫
2πx(−s+ t)x(s)e−iω(s− t

2 )ds. (21)

With s1 = s− t/2 we get

R2(t, ω) =

∫
x(

t

2
− s1)x(s1 +

t

2
)e−iωs1ds1 = R1(t, ω).

(22)

Hence, we have

F
dh
dt
x (t, ω) = e−iωt

2

(
i
ω

2
R1(t, ω)− iI2(t, ω)

)
. (23)

and

�
(
F

dh
dt
x (t, ω)

Fh
x (t, ω)

)
= �

(
e−iωt

2

(
iω2R1(t, ω)− iI2(t, ω)

)
e−iωt

2 R1(t, ω)

)
.

The imaginary part of Eq. (6) will simplify to

�
(
F

dh
dt
x (t, ω)

Fh
x (t, ω)

)
=

ω

2
. (24)

With this approach the reassignment vectors simplify to

t̂x(t, ω) = t− ct
t

2
, (25)

ω̂x(t, ω) = ω − cω
ω

2
, (26)
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and with the scaled reassignment ct = cω = 2 as proposed

in [9] for the matched Gaussian window, and in [13] for

the matched second Hermite function, all signal energy are

reassigned to t̂x(t, ω) = ω̂x(t, ω) = 0. Accordingly, due

to the TF shift invariance, the envelope matched window

h(t) = a(−t) gives the perfect localized reassignment at

t̂x(t, ω) = t0 and ω̂x(t, ω) = ω0 for all possible y(t) in Eq. (7).

IV. SIMULATION EXAMPLES

We illustrate with an example signal, simulated from the

envelope of

a0(t) =

K∑
k=1

αkqk(t), (27)

where qk(t), k = 1 . . .K are a set of basis Hermite functions

and αk some chosen weights. The example envelope is given

from K = 4 Hermite functions and αk given as 1, -0.5, 0

and 0.5 for k = 1 . . . 4, with the resulting envelope illustrated

in Figure 1a). A three-component signal with components

given from Eq. (7), all with equal amplitudes and envelope

shapes but different time locations, t0, as 70, 140 and 200

and and oscillating frequencies, ω0 2π0.125, 2π0.3 and 2π0.2,

is illustrated in Figure 1b). All phases φ are U [−π, π]. The

corresponding usual matched spectrogram (MSP), where nat-

urally h(t) = a0(t), and the matched window reassignment

(MWR), i.e., h(t) = a0(−t) are presented in Figure 2a) and

b) respectively. It is easily verified that the peaks found in

Figure 2b) are the exact time locations and the exact value (or

closest discrete Fourier transform-bin) for the frequency loca-

tions. We should point out that it is no limitation to consider

only the one-component case in the following simulations

as the reassignment is a TF local operation, independent of

time- and frequency location, as long as the components are

reasonably separated. Additionally, the envelope shape used

here, simulated from a sum of Hermite functions is just a

model example and there is no limitations to use any other

envelope shape.

Fig. 1. a) An example envelope used as function basis; b) A three component
example signal with the same envelope basis but where all components are
individually shifted in time and frequency.

Many of the existing concentration measures in TF analysis
are based on information or sparsity optimization where one
of the most famous is the Rényi entropy (RE), [14], defined
as

RE =
1

1− α
log2

∫ ∫ (
Wx(t, ω)∫ ∫
Wx(t, ω)dtdω

)α

dtdω, (28)

Fig. 2. a) The matched spectrogram (MSP) of the signal shown in Figure, 1b),
containing three components with the same envelope. b) The corresponding
matched window reassignment (MWR).

where Wx(t, ω) is any TF representation, and all integrals are

assumed to run over a chosen region of the TF plane. The

choice of the parameter α = 3 is the most applied formulation

[15] and for this choice the local RE for the peak of each

component in Figure 2b) will be zero, the smallest possible

entropy, where only one value differs from zero. For the

three-components altogether, the RE becomes 1.66 ≈ log2(3).
Theoretically, the RE could be used for counting of the equal

amplitude and equal envelope components, as the RE measure

is simplified to log2(number of components).

A. Time-frequency localization performance

We simulate one-component signals with t0 = 64 and ω0 =
0.125 using the envelope in Eq. (27) where we allow for a

stochastic jitter in the parameters αk according to

a(t) =
K∑

k=1

(αk + σpΔα)qk(t), (29)

where Δα ∈ U [−1, 1] and σp is a parameter. We simulate

1000 realizations and the resulting envelopes are illustrated

in Figure 3a) for σp = 0.3. The simulation is extended with

additive zero mean Gaussian white noise, for different signal-

to-noise ratios (SNR), where SNR is defined as the average

power of the signals divided by the variance of the noise.

We then apply the matched window reassignment (MWR)

where h(t) = a0(−t). The maximum value of the TF represen-

tation is found and the estimate of t̂0 and ω̂0 is taken as the

corresponding time- and frequency location. The percentage

of the number of correct time locations, i.e., t̂0 − t0 = 0
is evaluated and depicted in Figure 4a) for different values

of σp and different SNR. The degradation in accuracy for

larger values of σp is caused by that the single peak is

widened and at some occasions the nearby time value is

the maximum peak. For SNR=10 dB it is obvious that the
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Fig. 3. The figures each show 1000 realizations of envelopes of two
similar constructed classes. Each realization is given a random jittering of
the parameters as presented in Eq. (29) for σp = 0.3. Note that the main
visible difference is the depth of the first trough.

Fig. 4. The figures show the accuracy of the estimated time and frequency
peak locations of the matched window reassignment. The evaluation is made
on 1000 realizations with envelopes presented in Figure 3a) for different σp

and four different levels of SNR; a) Percentage of correct time locations; b)
Percentage of correct frequency locations.

results becomes inaccurate also when σp = 0, i.e., when

the matched window is the exact shape of the envelope. In

Figure 4b) the corresponding percentage of correct frequency

locations ω̂0−ω0 = 0 is shown for the same range of σp and

SNR. The results are similar to the estimated time locations

although somewhat more accurate for larger σp and lower

SNR. Studying the errors more closely we find that the nearby

frequency bin is the maximum value in all deviant cases.

We also investigate the corresponding RE measures of this

simulation shown in Figure 5a) that the mean RE of the 1000

simulations is robust to the increase in the jitter parameter σp

when there is no additive noise. The mean ± one standard

deviation are also depicted to show the variations of the

measure. In Figure 5b) the mean RE is shown for the different

cases of additive GWN and a large increase of RE is mainly

seen for when SNR=10 dB, which also is the case where the

time and frequency locations become more difficult to estimate

with accuracy.

Fig. 5. a) The mean Rényi entropy as function of jitter parameter σp with ±
one standard deviation shown as plus signs for the case of no noise; b) The
mean Rényi entropies as functions of the jitter parameter σp for four different
levels of SNR.

B. Classification performance

We also investigate the performance of classification when

the window h(t) = a0(−t) as presented in Figure 3a) is used

in MWR. We also compare with the MSP. Two classes should

be differed, class I consisting of 1000 simulations according

to the previous description for the envelope jitter and SNR.

Class II is similar but the envelope is given according to

Figure 3b). As seen, the two classes are close to overlap in

envelope shape when σp is large. We also allow for a Gaussian

distributed deviation in the time locations of N(0, 10) and in

the frequency locations of N(0, 0.01). We will use the RE

as classification measure but additionally we investigate the

statistical kurtosis (SK), defined as

SK =

∫ ∫
Wx(t, ω)

4dtdω

(
∫ ∫

Wx(t, ω)2dtdω)2
. (30)

The SK measures the sharpness of a distribution and has been

suggested in [16] as a TF concentration measure.

The resulting Receiver Operating Characteristics (ROCs) are

shown in Figure 6a) and 7a) for two different SNR, and two

different σp. The MWR outperforms the MSP and we can

also see that using the RE measure is more reliable than using

the SK measure in the evaluation. In Figure 6b) and 7b) the

True Positive Rates (TPRs) are depicted for a range of the

parameter σp when the False Positive Rate (FPR) is allowed

to be 5%. The MWR using the RE as measure is shown to

give a reliable classification also for low SNR.

We also evaluated using a simple correlation measure in

time, where the matched window (filter) was correlated with

the absolute values of the time signals, similarly to matched

filter detection. The classification results were close to random

in all cases and are not included in the figures. The main

reason for the failure is the frequency jitter which effects a

time based correlation significantly. This will also be the case
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Fig. 6. a) The resulting ROC for σp = 0.25 and SNR=30 dB for the MWR
and MSP, evaluated using the Rényi entropy (RE) and statistical kurtosis (SK)
measures; b) The True Positive Rates (TPRs) as a function of the parameter
σp when the False Positive Rate (FPR) is allowed to be 5% for SNR=30 dB.

Fig. 7. a) The resulting ROC for σp = 0.15 and SNR=10 dB for the MWR
and MSP, evaluated using the Rényi entropy (RE) and statistical kurtosis (SK)
measures; b) The True Positive Rates (TPRs) as a function of the parameter
σp when the False Positive Rate (FPR) is allowed to be 5% for SNR=10 dB.

for many other features and classification methods. However,

for the MWR and MSP evaluated with the TF concentration

measures, deviations in time- and frequency locations do not

matter for the classification result.

V. CONCLUSIONS

A novel technique of matched window reassignment of

the spectrogram is proposed with the aim to localize and

classify transient functions of arbitrary shape. We derive the

reassignment vectors that give perfect localization when the

window match the envelope of the transient function. The

method is evaluated for time- and frequency localization

where the location of the maximum peak is the estimate.

The results show that the accuracy in time- and frequency

localization is high also when the signal envelope deviates

from the matched window and when the SNR is reasonable

large. In the classification example the Rényi entropy is shown

to be a useful feature for distinction between classes. Other

applications are easily found, e.g. when it is difficult to judge

if a signal consists of a certain type of components, the method

could be used as shape detector.
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