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Abstract—We propose a novel approach to characterize the
complexity of multivariate physiological processes over multiple
time scales, which hereinafter we call Refined Generalized
Multivariate Multiscale Fuzzy Entropy (ReGeM-MFE). In this
preliminary study, we evaluate the effectiveness of this method-
ology in discerning different levels of complexity in Autonomic
Nervous System (ANS) dynamics during active stand-up, consid-
ering a bivariate process comprising heart rate variability and
blood pressure variability series. Results show that, using mean-
and variance-based ReGeM-MFE throughout different coarse-
graining steps, it is possible to statistically discern the resting
and stand-up conditions. Compared with the previously proposed
Refined Composite Multivariate Multiscale Fuzzy Entropy, we
demonstrate that the proposed ReGeM-MFE consistently out-
performs this metrics.

Index Terms—Complexity, Multivariate Multiscale Entropy,
Generalized Multiscale Entropy, Fuzzy Entropy, Autonomic Ner-
vous System, Heart Rate Variability, Blood Pressure.

I. INTRODUCTION

The concept of system complexity derives from the analysis
of nonlinear dynamics in physical processes. Complexity in
physiological systems intrinsically arises from their intricate
structures and interactions with other systems [1]. Entropy
measures have been widely used to quantify complexity in
heartbeat and brain dynamics, being able to discern between
age, gender, and a numerous amount of cardiovascular and/or
neurodegenerative diseases [1]–[4]. Particularly, such states
have been mostly associated with a loss of physiological
complexity [1]–[4].

Popular entropy algorithms are the Approximate and Sam-
ple Entropy (SampEn) [5], [6], as well as their multiscale
version (known as Multiscale Entropy, MSE) [7] devised to
account for multiple dynamics at different scale resolution and
long-range correlations. MSE was successfully used to quan-
tify complexity of signals in many fields, e.g., financial time
series, seismic time series and of course, physiological signals
[8]–[11]. The multiscale approach relies on two main steps: a
coarse-graining process to compute the scaled time series and
the application of SampEn algorithm. The traditional coarse-
graining process comprises dividing the original signal into
non-overlapping segments, and compute the mean value of

the samples within each window [7]. Recently, a generalized
version of MSE using also other moments than the mean has
been proposed [12], showing good performances also for a
variance-based MSEσ2 .

Another limitation of traditional SampEn-based approaches
is the dependence from parameters such as the threshold value
r accounting for the count of embedded vectors [13]. Standard
choices fix this threshold as the 15-20% of the series standard
deviation [6]. Nevertheless, in the frame of a multiscale
entropy calculation, if r is kept constant for all the scaled
series, some dynamical patterns of the process generating
the physiological series could be neglected [14], [15]. To
this extent, Valencia et al. proposed a Refined Multiscale
Entropy approach where the r threshold was changed as
per the standard deviation of each scaled time series [15].
Moreover, Fuzzy Entropy [16] and its multiscale version were
also proposed to overcome the parameter selection and data
length dependence of SampEn [17]. In fact, the similarity of
different dynamical states is fuzzily defined on the basis of an
exponential function, rather than the Heaviside function.

Furthermore, methodological advances in estimating phys-
iological complexity have been directed towards the study
of multichannel recordings, aiming to better understand the
entangled dynamics underlying a multivariate physiological
system. A former approach estimating entropy in multichannel
data refers to multivariate MSE [18], followed by the so-
called multivariate multiscale permutation entropy [19], and
the recently proposed Refined Composite Multivariate Gener-
alized Multiscale Fuzzy Entropy (RCmvMFE) [20]. Note that
RCmvMFE uses a coarse-graining technique for multivariate
analysis, with fuzzy rules for estimating similarity of phase
space vectors [20].

Nevertheless, RCmvMFE coarse-graining procedures em-
ploys overlapping vectors in time, which might bias the actual
entropy estimation. Moreover, the dimension of the embedded
vectors in the multivariate phase space reconstruction is esti-
mated through the sum of the dimensions associated with each
series dynamics, therefore possibly resulting in an overestima-
tion of the actual phase space dimension. To overcome these
limitations, here we propose a Refined Generalized Multivari-
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ate Multiscale Fuzzy Entropy (ReGeM-MFE), implementing a
coarse-graining procedure with non-overlapping time vectors
and a novel estimation of the multivariate phase space. The
proposed ReGeM-MFE embeds the features of RCmvMFE
regarding the fuzzyness and correction of the threshold r
throughout different scale factors.

We test ReGeM-MFE using two different coarse-graining
processes based on the mean and variance of the multivariate
physiological input (ReGeM-MFEµ and ReGeM-MFEσ2 ), and
validate this novel approach in discerning two different states
of ANS activation. Specifically, we study combined cardio-
vascular and diastolic blood pressure variability during supine
resting state and active stand-up. Note that latter upright state
is associated with a cardiac sympathetic activation, vagal with-
drawal, and a significantly complexity reduced then resting
state [21], [22].

Experimental protocol and subject recruitment are described
in Section II, together with the proposed ReGeM-MFE algo-
rithm and the statistical analysis methods. Results are reported
in Section III, and Discussion and Conclusions follow in
Section IV.

II. MATERIALS AND METHODS

A. Subject Recruitment, Experimental Protocol, and Acquisi-
tion set-up

Data were gathered from the well-known publicly available
repository Physionet [24]. Extensive details on the experimen-
tal protocol are reported in [22], [23]. Briefly, ten healthy
volunteers (five males) with no sign of cardiovascular diseases
were recruited in a postural change study. Individual subjects’
information is reported in Table I.

Table I
SUBJECT INFORMATION

Subjects ID Gender Age
(years)

Height
(cm)

Weight
(kg)

12726 M 28 170 64
12734 M 30 165 64
12744 M 28 180 100
12754 F 26 160 61
12755 M 32 192 83
12814 F 27 165 56
12815 F 22 185 73
12819 F 28 155 55
12821 F 32 173 77
13960 M 34 183 83

28.7 ± 1.2 172.8 ± 4.0 70.6 ± 4.5

ECG signal and blood pressure were acquired throughout
the experiment by means of a standard ECG monitor system
(BIOPAC MP System) and a non-invasive blood pressure mon-
itoring device (2300 FINAPRES BP monitor). ECG signals
were recorded following the lead II configuration, while blood
pressure was acquired non-invasively at the second phalanx of
the left middle finger.

The experimental protocol comprised six postural changes:
• two stand-ups;
• two rapid head-up tilt (75°over 2 seconds);

• two slow head-up tilt (75°over 50 seconds).

The six postural changes were randomized among subjects
and each of them lasted three minutes, being separated by five
minutes of resting state in a supine position.

The experimental procedure was approved by the Advisory
Board of the MIT-MGH General Clinical Research Center and
the MIT’s Committee on the Use of Humans as Experimental
Subjects. From the ECG and blood pressure signals, heart
rate variability (HRV) and diastolic blood pressure variability
(DBPV) series were extracted (details on the extraction of
fiducial points and artefact identification and correction are in
[25]). Then, a shape-preserving piecewise cubic interpolation
at the standard rate of 4 Hz was applied to both series. In this
preliminary endeavour, stand-up and precedent resting sessions
are considered for further analyses.

B. The proposed Refined Generalized Multivariate Multiscale
Fuzzy Entropy (ReGeM-MFEµ and ReGeM-MFEσ2 )

As a multiscale entropy algorithm, the proposed ReGeM-
MFE relies on a coarse-graining procedure of the input series.

Standard coarse-grained time series are constructed from
the original series by averaging the data points within non-
overlapping windows at scale β [7]. Given a c-variate time
series Y = {yk,b}Lb=1, where k = 1, ..., c and L is the length
of the series, each element of the coarse-grained series µχ

(β)
k,i

is calculated as follows:

µχ
(β)
k,i =

1

β

iβ∑
b=(i−1)β+1

yk,b (1)

considering 1 ≤ i ≤
⌊
L
β

⌋
= N and 1 ≤ k ≤ c. The length of

each coarse-grained time series is equal to the length of the
original time series divided by β.

As reported in the Introduction, a generalized multiscale
entropy analysis employing moments other than the mean has
been proven effective in characterizing multiscale complex-
ity of physiological systems [12]. Accordingly, MSEµ may
describe the main coarse graining process, whereas MSEσ2

may complement the complexity estimation by using second
moments, i.e., the variance, as follows:

σ2

χ
(β)
k,i =

1

β

iβ∑
b=(i−1)β+1

(yk,b −µ χ(β)
k,i )2 (2)

where 1 ≤ i ≤
⌊
L
β

⌋
= N and 1 ≤ k ≤ c. The proposed

ReGeM-MFEn starts from one of the two aforementioned
coarse-graining processes (based on n ≡ µ and n ≡ σ2),
applied to the normalized channels of a c-variate physiological
process.

If the embedding dimension and the time delay of
the c-variate multivariate process are [m1,m2, ...,mc] and
[τ1, τ2, ..., τc], respectively, the ReGeM-MFE multivariate em-
bedded vectors are defined as follows:
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ZM(i) =[Ξ(χ1,i, χ2,i, ..., χc,i),Ξ(χ1,i+τ , χ2,i+T, ..., χc,i+T),

...,Ξ(χ1,i+(M−1)T, χ2,i+(M−1)T, ..., χc,i+(M−1)T)]
(3)

where Ξ represents the median value of the samples, M =
max(m1,m2, ...,mc) and T = max(τ1, τ2, ..., τc).

As in [20], [26], ReGeM-MFE employs a fuzzy function
Γ(d, r) which allows to account for the pairs of vectors at a
distance larger than the standard fixed r. The ReGeM-MFE
fuzzy function for a given fuzzy power fc (usually set equal
to 2) can be expressed as [20]:

Γ(d, r) = e
−dfc

r (4)

considering a distance d between vectors computed as the
maximum absolute difference of their corresponding scalar
components. Furthermore, in order to prevent the influence
of the reduced variance of the coarse-grained series at higher
scales, the threshold r changes according to the scale factor
β: r = 0.20×std(nΨ(β)), where nΨ(β) is the vector given by
the median values between the scaled channels. The selection
of the coefficient 0.20 used in the calculation of r is common
in the literature [31].

Then we define a global quantity:

ΛM(r) =
1

(N − ν)

N−ν∑
i=1

∑N−ν
j=1,i6=j e

(
−(d[ZM(i),ZM(j)])fc

r )

N − ν − 1
(5)

where ν = T×M.
Extending the dimensionality from M to M + 1, ReGeM-

MFE is finally computed as follows:

ReGeM−MFE(Y, β,T,M, r) = −ln(
Λ(M+1)(r)

ΛM(r)
) (6)

In this study we set M = 2 and T = 1, taking into
consideration that these are the parameter values usually
employed for the univariate entropy estimation for the HRV
and DBPV series [27].

C. Statistical analysis

Statistical analyses were performed for µ-coarse graining
from 1 to 5, and σ2-coarse graining from 2 to 5 considering
ReGeM-MFE estimates during the last two minutes of resting
state, and the first two minutes of stand-up after the transition
phase. Likewise, estimates of RCmvMFE were evaluated for
comparison reasons.

From the trends of ReGeM-MFE and RCmvMFE, an overall
complexity index (CI) [11], [13], [28] quantifying the area
under the curve of the entropy level as a function of the scale
factor β, was also calculated.

Wilcoxon non-parametric test was used to compare the
two conditions (resting vs. stand-up) with null hypothesis of
equal median between samples. Of note, the use of such non-
parametric tests was justified by the non-gaussian distribution
of samples as demonstrated by a Shapiro-Wilk procedure.

III. EXPERIMENTAL RESULTS

Figure 1 shows estimates of ReGeM-MFEµ and
RCmvMFEµ computed over the first five scale factors
during resting state and stand-up conditions. At each scale
factor, median ReGeM-MFEµ was higher during the supine
resting condition, while showing a significant decrease during
stand-up. Estimates of RCmvMFEµ, however, overlap at
β = 4, 5 with trends of higher complexity associated with
stand-up conditions.
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Figure 1. Median and median absolute deviation (MAD) of the ReGeM-
MFEµ (top) and RCmvMFEµ(bottom) values computed during stand-up and
previous resting state sessions.

Table II
P-VALES OF WILCOXON STATISTICAL TEST APPLIED TO REGEM-MFEµ

AND RCMVMFEµ VALUES CALCULATED IN THE STAND-UP PHASES AND
IN THE CORRESPONDING PREVIOUS RESTING STATE SESSIONS.

Rest vs. Stand-up
ReGeM-MFEµ RCmvMFEµ

β=1 0.0004 0.0002
β=2 0.0007 0.0013
β=3 0.0028 0.0137
β=4 0.0072 0.0930
β=5 0.0276 0.4553
CI 0.0036 0.0090

Bold indicates significant p-values (p < 0.05)
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Table II shows p-values from Wilcoxon statistical tests
computed while comparing rest vs. stand-up conditions at
each scale for the ReGeM-MFEµ and RCmvMFEµ metrics.
CI metrics are shown as well. Estimates of ReGeM-MFEµ are
associated with statistically significant differences at each scale
factor, as well as for CI, whereas estimates of RCmvMFEµ
are associated with not significant results (p > 0.05) at
scales β = 4, 5. Furthermore, 5 out of the 6 ReGeM-MFEµ
estimates are associated with a more significant p-value than
the corresponding RCmvMFEµ.

Figure 2 shows estimates of ReGeM-MFEσ2 and
RCmvMFEσ2 . In this case, supine resting state conditions
were characterized by higher complexity than stand-up using
both algorithms.

Table III shows the p-values from Wilcoxon statistical tests
computed for ReGeM-MFEσ2 and RCmvMFEσ2 samples.
Both approaches statistically discriminated the two conditions
at all scales, as well as with CI. Nevertheless, 4 out of 5 p-
values associated with ReGeM-MFEσ2 estimates are one order
of magnitude lower than the corresponding RCmvRFEσ2 ,
whereas at β = 2 the difference goes from p = 0.0001 for
ReGeM-MFEσ2 to p = 0.03 for RCmvRFEσ2 .
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Figure 2. Median and median absolute deviation (MAD) of the ReGeM-
MFEσ2 (top) and RCmvMFEσ2 (bottom) values computed during stand-up
and previous resting state sessions.

Table III
P-VALES OF WILCOXON STATISTICAL TEST APPLIED TO REGEM-MFEσ2

AND RCMVMFEσ2 VALUES CALCULATED IN THE STAND-UP PHASES AND
IN THE CORRESPONDING PREVIOUS RESTING STATE SESSIONS.

Rest vs. Stand-up
ReGeM-MFEσ2 RCmvMFEσ2

β=2 0.0001 0.0304
β=3 0.0002 0.0028
β=4 0.0001 0.0028
β=5 0.0004 0.0022
CI 0.0036 0.0028

Bold indicates significant p-values (p < 0.05)

IV. DISCUSSION AND CONCLUSIONS

This preliminary study introduces ReGeM-MFE as a novel
signal processing methodology to describe complex physi-
ological multivariate-multiscale dynamics using fuzzy rules
and moments other than the first-order. Our method allows
to characterize both short and long-range correlations in ANS
dynamics within (multiscale) and between (multivariate) dif-
ferent autonomic signs.

We took inspiration from previously defined fuzzy entropy
algorithms and, especially, Refined Composite Multivariate
Generalized Multiscale Fuzzy Entropy (RCmvMFE) [20] be-
cause of the significant reliability in dealing with short-time
series, low dependence on free parameters, and computational
efficiency. Starting from the generalized version of MSE [12],
we proposed ReGeM-MFEµ and ReGeM-MFEσ2 considering
first- and second-order moments of the coarse-grained series.
Both indices embed a scale-dependent radius r in a fuzzy func-
tion that measures the match degree of the state space vectors.
The proposed methodology also employs a novel estimation
procedure of such embedded vectors in the multivariate phase-
space reconstruction, taking into account the non-parametric
central tendency of the multivariate scaled series.

We tested ReGeM-MFE indices in a landmark experimental
setup eliciting sympathovagal changes after postural changes
[22]–[24], considering bivariate series including HRV and
DBPV during resting state and active stand-up condition.

Results clearly indicate that the proposed ReGeM-
MFEµ and ReGeM-MFEσ2 indices consistently outperform
RCmvMFE estimates at all considered scales as demonstrated
by Wilcoxon non-parametric statistics. Nonetheless, we cannot
exclude different performance at higher scales, which in this
preliminary study were limited to 5 because of the protocol
length (2 minutes).

Results confirms that the the cardiovascular system, consid-
ered as a multivariate system, is associated with a significantly
reduced complexity level during postural changes than in
resting state [21], [29]. These effects of orthostatic stress
on cardiovascular dynamics are known to be the result of a
vagal withdrawal, with reduced complexity levels associated to
different degrees of postural changes [21]. Note also that the
relationship between sympathovagal changes and multiscale
entropy analysis of HRV has been recently studied in rats,
demonstrating that higher sympathetic drive tends to reduce
HRV complexity [29]. In fact, experimental results in ani-

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 299



mal models associated sympathetic influences to the scaling
properties of heartbeat dynamics, and vagal influences to the
complexity levels [30].

In conclusion, our findings suggest that the proposed
ReGeM-RFE approach can be considered a promising tool
for the multiscale complexity analysis of ANS considered as
a multivariate system. Future works will progress in validating
this method with further experimental protocols and multivari-
ate synthetic data, as well as in extending the applications to
other multivariate systems than the cardiovascular (e.g., brain-
brain and brain-heart interactions).
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