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Abstract—Adversarial classification is the task of performing
robust classification in the presence of a strategic attacker.
Originating from information hiding and multimedia forensics,
adversarial classification recently received a lot of attention in
a broader security context. In the domain of machine learning-
based image classification, adversarial classification can be in-
terpreted as detecting so-called adversarial examples, which are
slightly altered versions of benign images. They are specifically
crafted to be misclassified with a very high probability by the
classifier under attack. Neural networks, which dominate among
modern image classifiers, have been shown to be especially
vulnerable to these adversarial examples.

However, detecting subtle changes in digital images has always
been the goal of multimedia forensics and steganalysis, two major
subfields of multimedia security. We highlight the conceptual
similarities between these fields and secure machine learning.

Furthermore, we adapt a linear filter, similar to early steganal-
ysis methods, to detect adversarial examples that are generated
with the projected gradient descent (PGD) method, the state-of-
the-art algorithm for this task. We test our method on the MNIST
database and show for several parameter combinations of PGD
that our method can reliably detect adversarial examples.

Additionally, the combination of adversarial re-training and
our detection method effectively reduces the attack surface of
attacks against neural networks. Thus, we conclude that adver-
sarial examples for image classification possibly do not withstand
detection methods from steganalysis, and future work should
explore the effectiveness of known techniques from multimedia
security in other adversarial settings.

Index Terms—Adversarial Classification, Adversarial Exam-
ples, Multimedia Forensics, Steganalysis

I. INTRODUCTION

The task of adversarial classification is to perform robust
and reliable classification in the presence of strategic attack-
ers [1]. The nature of a strategic attacker is that she will
not disregard knowledge about possible defense mechanisms.
Rather, she adapts her attack strategy to circumvent the most
probable defense mechanisms [2].

In machine learning-based classification, state-of-the-art at-
tacks are so-called adversarial examples [3]. Adversarial ex-
amples are benign inputs that have been strategically modified
by an attacker such that they are misclassified with a very
high probability and confidence. Initially, adversarial exam-
ples were generated against classifiers based on convolutional
neural networks (CNNs), but soon it was shown that they
generalize to other machine learning algorithms as well [4].

This research was funded by Archimedes Privatstiftung, Innsbruck, Austria
and Deutsche Forschungsgemeinschaft (DFG) under grant “Informationsthe-
oretische Schranken digitaler Bildforensik”.

Adversarial classification against adversarial examples can
be achieved in two different ways: either the designers of
the CNNs try to detect adversarial examples as adversarial
(adversarial detection) or they try to increase the robustness
of the CNN in such a way that adversarial examples are
classified in the class of the underlying benign example (robust
classification). But, to this day, no method to detect adversarial
examples effectively exists and earlier work from the area
of adversarial machine learning [5], [6] did not prove to be
useful against adversarial examples, either.

Although adversarial examples do not only exist for image
classifiers (e. g., they also exist for malware classifiers [7]),
the main body of work is performed for the area of digital
images. Thus, we restrict ourselves to this domain.

Every method for generating adversarial examples from
benign images calculates which pixels should be modified by
how much (restricted by a distortion constraint) to maximize
the probability of a misclassification, e. g., [3], [8]–[10].

Detecting subtle malicious changes in digital images has al-
ways been the goal of multimedia forensics and steganalysis1.
Without explicitly using the term adversarial classification,
both domains perform adversarial detection since the very
beginning of scientific research in either of the fields. The
strategic nature of the attackers here is defined by research in
counter-forensics and steganography [11]. Both are implicitly
aware of possible detection methods and try to evade them.

In the field of digital image forensics [12], a forensic
investigator has to decide if a given image was manipulated
by an image forger or not. Oftentimes, the image forger
manipulates large connected parts of the image with the
aim to change its semantic [11]. Thereby, she might use
tamper hiding techniques [13] to conceal traces she expects
the forensic investigator to identify.

In steganalysis, a steganalyst has to decide if a given image
has a message embedded by a steganographer [14]. While
embedding her message, the steganographer tries to modify
individual pixel values in such a way that the steganalyst
gets the least information about the fact that a message
is embedded. To achieve this, every modern steganographic
algorithm defines an adaptivity criterion that identifies which
pixels are most suitable for embedding.

1Note that in steganography/steganalysis jargon usually the steganalyst is
the attacker and the steganographer is the defender. We refrain from statements
about who is good or bad, but reverse their roles in this paper.
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Machine learning-based approaches, and especially detec-
tors built on CNNs, are by now very common in image
forensics and steganalysis. But, to the best of our knowledge,
nobody has tried to go the other way around, i. e., to use
established methods from multimedia security to detect adver-
sarial examples against CNNs. However, adversarial examples
are generated by changing individual pixels of a benign
image, thus particularly resembling the embedding process in
steganography.

We address this gap and give an intuition on why, how, and
what the area of secure machine learning can learn from the
field of steganalysis, by formalizing further parallels between
them and providing evidence of its effectiveness in a practical
scenario. We develop a steganalysis-inspired linear prediction
method to detect adversarial examples that are generated with
the projected gradient descent (PGD) method [9].

The remainder of the paper is organized as follows: Sec-
tion II gives the background about secure machine learning
and steganalysis, and highlights the parallels and differences
of these fields. As a proof of concept, we develop our method
to detect adversarial examples in Section III and show its
effectiveness in Section IV. Section V concludes.

II. BACKGROUND & PARALLELS

The publication closest to our work is [15]. The authors
show the parallels of attacks against and defenses for secure
machine learning and digital watermarking, another subfield of
multimedia security. We argue that the detection of adversarial
examples rather falls into the domain of steganalysis and
encourage researchers to make use of established steganalysis
methods before they start out to reinvent the wheel.

A. Secure Machine Learning

The underlying assumption of every machine learning-
based classifier is that the training data follows the same,
possibly unknown distribution as the test data. For example,
a supervised CNN-based classifier that has to distinguish n
different classes is trained with many samples xi and their
corresponding labels i ∈ {1, 2, . . . , n}. So, the CNN learns
an approximation of the classification function F (xi) = i,
given a specific loss function `F (xi, i), and predicts a label
i ∈ {1, 2, . . . , n} for every sample encountered during testing.

1) Creating Adversarial Examples: Intuitively, every (un-
targeted) adversarial examples starts from a benign example
xi. The attacker tries to find r, subject to a distortion con-
straint, such that xi + r gets misclassified by F (·). This can
be achieved by solving the following optimization problem:

arg min
r

d(xi, xi + r), (1)

s. t. F (xi + r) = i′ 6= i,

for a given distance metric d.
For a given xi, we define the i-th class as the benign

class, whose samples follow a distribution P1. Accordingly,
we denote as P0 the distribution of samples belonging to every
other class except i. This allows to transform every multi-class

problem to the binary case. With a slight abuse of notation,
the goal of an attacker is to modify an image x1 ∼ P1 such
that it gets classified as drawn from P0.

Among all the methods proposed for the generation of ad-
versarial examples, e. g., [3], [8], [10], the so-called projected
gradient descent (PGD) method [9] constitutes the state-of-
the-art at the time of writing.

The PGD method basically is an iterated variant of the Fast
Gradient Method (FGM) [16], which takes a single step of
value α in the direction of the gradient of the loss function
∇`F . Additionally, all pixel values are clipped to the range of
0 and 1 to ensure a valid image in the end. PGD introduces a
second variable ε and sets x[0] = x1 to iteratively calculate

x[k+1] = clip[x1−ε,x1+ε]

(
FGM(x[k])

)
, (2)

for a given number of iterations K. So, x[K] serves as an
approximation of the optimal adversarial example xi + r in
Eq. (1). The outer clipping ensures that ||x1 − x[K]||∞ ≤ ε
to model an attacker that is restricted by the infinity norm.
Note that depending on the value of the gradient of the loss
function the PGD method changes individual pixel values up
to a maximum of ε.

2) Proposed Countermeasures: Recent research on the
countermeasures against adversarial examples mainly concen-
trates on increasing the robustness of the underlying neural
network so that it classifies adversarial examples to the class
of the benign object used for creating the example. One
recent approach is to cut off the lower bit layers and only
classifying the remaining image [17], in the hope that the
adversarial modifications are concentrated in the lower bit
layers. Another one is to re-train the neural network with
adversarial examples [9], so-called adversarial re-training.

Although the nature of adversarial examples is still not fully
known [18], it is accepted that they generalize over different
networks: adversarial examples generated against one network
are also likely to be misclassified by other networks [19].

B. Steganalysis

In steganalysis, the distribution P0 defines the distribution
of all possible benign images (cover images), while P1 is the
distribution of stego images. Every modern steganographic
embedding function defines a so-called adaptivity criterion
which measures the distortion when changing single pixels
in a specific way. During the embedding of the message, the
steganographer tries to minimize the overall distortion with
the goal that the stego image x1 ∼ P1 gets classified by the
steganalyst as drawn from P0. The steganographer decides on
a per-pixel basis about the changes she introduces. The goal of
the steganalyst is to decide for a given image xi, from which
distribution it was drawn. As this is a classic task for a neural
network classifier, it comes as no surprise that CNN-based
steganalysis attracted a lot of attention recently.

C. Parallels and Differences

We summarize the main parallels and differences of secure
machine learning and steganalysis in Table I.
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TABLE I
PARALLELS AND DIFFERENCES OF SECURE MACHINE LEARNING AND

STEGANALYSIS

Secure Machine Learning Steganalysis

Attack point adversarial example stego image
Decision by network (designer) steganalyst
Attack algorithm modification embedding
Attack parameters (internal) parameters adaptivity criterion
Attack surface individual pixels individual pixels
P0: distribution of other class(es) cover images
P1: distribution of benign class stego images

Attacker’s goal get x1 ∼ P1 classified get x1 ∼ P1 classified
as drawn from P0 as drawn from P0

Nature of P1 exogenously given influenced by attacker

The main difference is the nature of the distribution P1.
In secure machine learning, both distributions P0 and P1 are
exogenously given from real-world examples, and the goal of
the attacker is to modify images drawn from P1 so that they
are classified as being drawn from P0. This can be regarded
as moving x1 across the decision boundary as far as possible
under the given distortion constraint, e. g., ε for PGD.

Contrary to that, in steganalysis the distribution P1 is given
by the images created by the steganographer, and can thus
be influenced by her attack algorithm. So, the goal of a
steganographer is to create a distribution P1 similar enough
to P0, such that a steganalyst cannot reliably differentiate
between objects drawn from P1 and objects drawn from P0.

A higher value of ε in PGD enables an attacker to move her
adversarial examples farther into the space of P0 by changing
individual pixels more. By doing so, the attacker makes it
harder even for adversarially re-trained networks to correctly
classify adversarial examples [9].

But, detecting objects that deviate from an expected distri-
bution is exactly what established methods from steganalysis
are designed to do. So, the higher ε for PGD is, and the less
robust the CNN classifiers get, the better the performance of
methods adapted from steganalysis should be.

III. PROOF-OF-CONCEPT: ADAPTING STEGANALYSIS

A. Method

One of the simplest and earliest steganalysis methods is
based on the intuition that pixels that were changed during
the embedding behave different than pixels that were not
changed [14]. For example, in a (unmodified) cover image, the
original pixel values should be estimable from values of the
surrounding pixels. If pixel i was changed during embedding,
its observed value xi will deviate from the estimated value x̂i.
This estimation can be achieved by a simple linear filter of
the following form [20]:

x̂i = xi ∗

 −1/4 1/2 −1/4
1/2 0 1/2
−1/4 1/2 −1/4

 .

Taking the average of the weighted differences over all n
pixels in an observed image can serve as an indicator if a
message was embedded or not.

p̂ =
1

n

n−1∑
i=0

wi

(
xi − x̂i

)
(3)

If p̂ is relatively small, it can be expected that the image
is a cover image. The weights wi in Eq. (3) account for local
predictability, and one successful initialization [20] suggest
that w−1i ∝ 5 + σ2

i give accurate estimates, where σ2
i denotes

the local variance in the neighborhood of pixel i (but exclud-
ing the center pixel). It was shown that such an estimator,
adapted to a specific way of changing the pixel values during
embedding [20], coincides with an asymptotically uniformly
most powerful (AUMP) hypothesis test [21].

B. Experimental Setup

We test our method on the MNIST dataset [22] against
adversarial examples generated by the PGD method [9]. The
MNIST dataset contains 60 000 grayscale images of handwrit-
ten digits, which are split up into 50 000 images in the training
set and 10 000 images in the test set.

The detection of adversarial examples is performed by
calculating p̂ as in Eq. (3) for every image and classifying
it as adversarial if p̂ is above a certain threshold p̄. We chose
a conservative approach and set p̄ to the maximum value
obtained from the 50 000 images from the training set, so that
p̄ ensures no false positives on the training set.

To ensure reproducibility, we did not train the CNNs our-
selves but fetch the natural and secret models from [9]2. Here,
the secret model was re-trained with adversarial examples
generated by PGD against the natural model with ε = 0.3.

Furthermore, we use the provided attack script to generate
adversarial examples for every image in the test set, for every
ε ∈ {0.01, 0.02, . . . , 0.5} for both models. This brings the total
number of adversarial images used for testing to 100 0003. All
adversarial examples are generated with full knowledge of the
CNN they are targeting, making this a white-box attack, and

2Available at: https://github.com/MadryLab/mnist challenge
350 (values for ε) × 2 (models) × 10 000 (images in the test set) = 100 000

model

fetch
(natural/secret)

attack
adversarial
examples predict labels

benign
examples x̂

p̂ p̂ > p̄

p̄

adversarial

benign
max(p̂)training set

yes

no

Fig. 1. Block diagram of our experiments’ workflow
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TABLE II
TRUE POSITIVE RATE OF OUR DETECTOR (OVER ALL 10 000 IMAGES OF THE MNIST TEST SET)

Model ε
0.010 0.050 0.100 0.150 0.200 0.250 0.300 0.330 0.350 0.370 0.400 0.420 0.450 0.470 0.500

natural 0.000 0.000 0.529 0.982 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
secret 0.000 0.000 0.000 0.001 0.009 0.025 0.047 0.137 0.320 0.574 0.848 0.937 0.985 0.995 0.999
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Fig. 2. True positive rate of our method for different ε

thus the worst-case scenario for a defender [23]. The overall
setup of our experiments4 is depicted in Fig. 1.

IV. RESULTS

A. Detecting Adversarial Examples

As explained in Sec. III-B, our method is constructed in
such a way that false positives are extremely unlikely and
indeed, in none of our tests we encountered a single benign
image that was classified as adversarial by our method.

Thus, to fully assess the performance of our method, it is
enough to report the true positive rate (TPR), i. e., the amount
of adversarial examples that were correctly identified by our
method. Table II lists the TPR for the test set for different
values of ε. As we can see, our method improves for higher
values of ε for both models. This is to be expected, as with
increasing value of ε, the adversarial examples will deviate
farther from P1 and thus are better detectable by our method.

It is interesting to observe that attacks against the se-
cret model are harder to detect for our method. First tests about
the difference of the adversarial examples created against the
re-trained model (omitted here due to space constraints) show
that these adversarial examples change more pixel values in a
homogeneous way, thus lying closer to our pixel prediction.

We plot the TPR for both models and all tested values of
ε in Fig. 2. In comparison to the accuracy of the models

4Our code is available at: https://github.com/alxshine/stego4secureML
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Fig. 3. Accuracy of both classifiers from [9] for different ε

from [9] (cf. Fig. 3), it is observable, that our method indeed
improves approximately at the point where the CNN classifiers
lose robustness (the dotted (dash-dotted) vertical line indicates
where our method achieves ≈ 50% TPR for the natural (secret)
model). This orthogonal behavior of our adversarial detection
and the robust classification obtained by adversarial re-training
motivates a combination of both approaches.

B. Combination of our method with adversarial re-training

To test the combination of our method and the adversarially
re-trained CNNs from [9], we first create adversarial examples
for every value of ε for every image from the test set. Then,
we apply our method to decide if the example is adversarial
or not. All images that are not detected as adversarial by our
method are handed to the CNN classifiers which predict their
labels, see Fig. 1. We plot the accuracies of the combined
approach for both models in Fig. 4. As we can see, for the
natural model the accuracy never falls below 50% and for
the secret model the accuracy in never less then 96%. This
confirms that our method detects a majority of the adversarial
examples that would have been misclassified by the CNNs.

It is notable that for the natural model we achieve perfect
separation of adversarial and benign samples for ε ≥ 0.17
(dotted vertical line in Fig. 4), which is also the exact value
where the undefended network’s accuracy is zero (cf. Fig. 3).

For the secret model we achieve perfect separation for ε ≥
0.31 (dash-dotted vertical line in Fig. 4), whereas an attacker
would need ε ≥ 0.47 to achieve zero accuracy (cf. Fig. 3).
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Fig. 4. Accuracy of the combination of both methods for different ε

V. CONCLUSION

Adversarial classification in the area of secure machine
learning can roughly be divided into adversarial detection and
robust classification. While the latter approach gained more
attention recently, we argue in this paper that the detection
of adversarial examples crafted against CNN-based classifiers
can draw on long established methods from steganalysis.

We highlight the conceptual parallels between the creation
of adversarial examples and the generation of stego images
and develop a very simple method to reliably detect adversarial
examples generated by the PGD method. Furthermore, we give
theoretical insights on why methods adapted from steganal-
ysis can successfully complement robust classification: they
are designed to perform well against exactly the adversarial
examples that are hard to classify robustly.

An even better performance can be achieved by combining
our method with adversarial re-trained CNNs. The minimum
accuracy of the combined approach over all parameters is 96%,
almost at par with the accuracy of the tested CNNs for benign
images. An additional benefit of the combined approach is that
it efficiently reduces the freedom of an attacker, as it is very
hard to defeat our method and adversarially re-trained CNNs
with the same adversarial examples.

For our proof-of-concept, we restrict ourselves to a very
simple method from the domain of steganalysis. Future work
should identify, which methods from the field of multimedia
forensics can be leveraged to further improve the performance
of adversarial detection in secure machine learning. For ex-
ample, methods from the area of copy-move forgery detection
could be adapted to identify adversarial examples that modify
large connected parts of an image and thus cannot be reliably
detected by our method.

The bigger picture suggests not only that machine learning
is useful in steganalysis and multimedia forensics, but also
that secure machine learning should learn from these fields.

REFERENCES

[1] L. Dritsoula, P. Loiseau, and J. Musacchio, “A game-theoretic analysis of
adversarial classification,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 12, pp. 3094–3109, 2017.
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[20] A. D. Ker and R. Böhme, “Revisiting weighted stego-image steganaly-
sis,” in Security, Forensics, Steganography, and Watermarking of Multi-
media Contents X, E. J. Delp III, P. W. Wong, J. Dittmann, and N. D.
Memon, Eds., vol. 6819. SPIE, 2008, p. 681905.

[21] L. Fillatre, “Adaptive steganalysis of least significant bit replacement
in grayscale natural images,” IEEE Transactions on Signal Processing,
vol. 60, no. 2, pp. 556 –569, 2012.

[22] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database,” AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, vol. 2, 2010.

[23] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “SoK: Security
and privacy in machine learning,” in IEEE European Symposium on
Security and Privacy, 2018.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 956


