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Abstract—Sparse Bayesian Learning (SBL) approaches to the
EEG inverse problem such as Champagne have been shown
to outperform traditional `1-norm based methods in terms of
reconstructing sparse source configurations. Current approaches
are however sensitive to strong noise contributions and assume
independent samples, whereas neurophysiological time series are
strongly auto-correlated. Here we present extensions, backed by
compressive sensing theory, to the Champagne algorithm that
improve the reconstruction performance in low-SNR settings
as well as in the presence of correlated measurements. Our
numerical simulations using a realistic EEG forward model
confirm the efficacy of our approaches.

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive brain ima-
ging technique that allows one to monitor brain activity with
high temporal resolution. EEG activity is measured by a
small number of sensors located outside the head. The EEG
measurement matrix, Y ∈ RM×T , consists of T column
vectors, y(t) ∈ RM×1, t = 1, . . . , T representing T samples
of the EEG measurement at M sensors. It can be written as
Y = LX + E, where the brain activity at N brain locations,
x(t) ∈ RN×1, t = 1, . . . , T , is stacked into the source matrix,
X ∈ RN×T . The lead field matrix, L ∈ RM×N , maps
the activity of the brain sources to the sensors and can be
obtained for a given head geometry and estimates of the
electrical conductivities of the main tissue types using the
quasi-static approximation of Maxwell’s equations to model
the flow of extracellular neuronal currents in the head. It is
typically computed using discretization methods [1], [2]. The
matrix E ∈ RM×T denotes white Gaussian noise assumed to
be independent of the source activations. The EEG inverse
problem is to infer the brain activity X from the EEG
measurement Y for a given lead field matrix L (in other words
to localize EEG measurements to anatomical brain structures).
It is a highly ill-posed problem, since the number of brain
sources (104 ∼ 105) is much larger than the number of EEG
sensors (32 ∼ 256). As the lead field matrix is heavily ill-
conditioned, the solution to the inverse problem is moreover
highly sensitive to small changes in the measurement as well
as to noise. The accuracy with which the locations of the brain
sources can be reconstructed from EEG (in other words, the
spatial resolution) is, therefore, relatively poor.

A common approach to deal with the ill-posedness of the
EEG inverse problem is to employ regularized maximum-
likelihood approaches minimizing the cost function L(X) =
||Y − LX||2Q + R(X). Here, the first term represents the
data fidelity and the second term is a penalty encoding
prior belief on spatial or temporal properties of the sources
to be reconstructed. Common penalties are `1-norms, indu-
cing sparsity [3], `2-norms, inducing smoothness [4], mixed
norms [5]–[7], and penalties enforcing sparsity in a different
domain using dictionaries such as Gabor frames or cortical
patches [8]–[10]. Note that regularized maximum-likelihood
approaches can also be interpreted in a Bayesian sense as
maximum a-posteriori (MAP) estimators assuming pre-defined
prior distributions for the brain sources (e.g., [11]). A po-
werful advancement of these approaches are so-called type-II
maximum-likelihood (ML-II, also known as empirical Bayes)
methods, in which the parameters of the prior distribution (i.e.,
the hyperparameters) are learned from the data along with the
model parameters [12].

A desirable property of source reconstruction algorithms is
the ability to correctly determine the set of active brain sites (in
other words, the spatial support of X). ML-II algorithms using
sparse Bayesian learning (SBL, [13]) such as Champagne
[14, Chapter 4] [15] have been shown to outperform MAP
approaches using sparsity-inducing `1-norms in this regard.
Current SBL algorithms for brain source localization are,
however, characterized by high computational cost, and may
however suffer from reduced performance in low-SNR (signal-
to-noise ratio) regimes. Moreover, these algorithms typically
assume independent samples. Consequently, they are unable
to exploit temporal correlations in the data, and may even be
negatively affected by such correlations. Finally, there is no
theory yet in this field that would provide a non-asymptotic
bound linking the amount of available data to the accuracy
with which the active brain regions can be determined.

In this paper, we address these limitations building on
recent results from the signal processing literature. First, we
provide a novel algorithm for solving the SBL problem using
a convex upper bound of the cost function that is tight in
low-SNR regimes. Moreover, we present a theoretical result
that expresses the spatial source reconstruction accuracy as
a function of the number of samples. To comply with the
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assumption of independent and identically distributed (i.i.d.)
samples made by the theorem, we introduce a data-dependent
temporal whitening scheme. Numerical simulations are carried
out to assess the efficacy of the proposed approach for i.i.d.
as well as auto-correlated pseudo-EEG data. As part of these
simulations, we compare realistic EEG lead fields to artificial
matrices exhibiting the restricted isometry property (RIP)
required by our theory.

II. SPARSE BAYESIAN LEARNING/CHAMPAGNE

In the sparse Bayesian learning framework, a Gaussian prior
distribution is assumed for the underlying brain sources, where
it is assumed that the activities at different brain locations are
independent, and where the variance at each location, γn, is an
unknown parameter: xn(t) ∼ N (0, γn), n = 1, . . . , N . Then,
the probability distributions of the sources and measurements
can be derived as follows:

P(X|γ) =
T∏
t=1

P(x(t)|γ) =
T∏
t=1

N (0,Γ) (1)

P(Y|X) =
T∏
t=1

P(y(t)|x(t)) =
T∏
t=1

N (Lx(t), σ2I) , (2)

where γ = [γ1, . . . , γN ]>, Γ = diag(γ), and where σ2 denotes
the measurement noise variance, which is considered known
throughout this setting. This assumption is reasonable in the
typical setting in which task-related brain activity is analysed.
Here, the noise variance can be estimated from a preceding
resting state measurement.

Instead of computing the full posterior distribution,
P(X,γ|Y), ML-II algorithms replace the hyperparameters γ
by their MAP estimates, γ̂, and focus on estimating the poste-
rior distribution P(X|Y, γ̂). In the context of EEG and MEG
(magnetoencephalography), this approach has been introduced
as the Champagne algorithm [14, Chapter 4]. It can be shown
that for given γ, this posterior is Gaussian [14]:

P(X|Y,γ) =

T∏
t=1

N (µx(t),Σx) ,where (3)

µx(t) = ΓL>(Σy)−1y(t) (4)

Σx = Γ− ΓL>(Σy)−1LΓ (5)

Σy = σ2I + LΓL> . (6)

For given µx(t) and Σx, the log of the marginal likelihood
P(Y|γ) is given by

L(γ) = log|Σy|+
1

T

T∑
t=1

y(t)>Σ−1y y(t) . (7)

Optimizing (7) w.r.t. γ leads to the update rule

γn = [Σx]n,n +

[
1

T

T∑
t=1

(µx(t))2n

]
for n = 1, . . . , N . (8)

Final estimates of the model parameters µx(t), Σx and
γ are obtained by iterating the update rules (4)–(6) and

(8) until convergence [16]. The resulting algorithm is called
expectation maximization (EM)-Champagne. Note that, in the
final solution, many individual variances γn will be zero,
leading to a sparse solution X. In practice, values exactly equal
to zero may not be obtained. Therefore, a those variances, for
which γn < γthresh, n = 1, . . . , N holds, are set to zero in
each iteration of the algorithm, where γthresh is a threshold.

An alternative algorithm can be derived by replacing the
log-likelihood (7) with the convex upper bound

L̃(γ, X̃, z) = z>γ − z0 (9)

+ minX̃
1

T

T∑
t=1

[
1

σ2
||y(t)− Lx̃(t)||2 + x̃(t)>Γ−1x̃(t)

]
,

using auxiliary variables X̃ and z [15]. Minimizing (9) w.r.t.
γ, X̃, and z yields the update rules (4),

zn = L>n (Σy)−1Ln for n = 1, . . . , N , and (10)

γn =

√√√√[ 1
T

∑T
t=1(µx(t))2n

]
zn

for n = 1, . . . , N , (11)

where Ln in (10) is the n-th column of the lead field matrix.
Final estimates of the variances γ and the posterior mean of
the brain sources, X̄, are obtained by iterating the updates
(10)–(11) until convergence. The resulting algorithm is called
majorization-minimization (MM)-Champagne. For a general
introduction to MM algorithms see [17].

III. TIGHT UPPER BOUND FOR LOW-SNR REGIMES

While the convexity-based MM-Champagne algorithm over-
comes the high computational cost of the EM-Champagne
algorithm, it has been noted that the performance of both
algorithms is negatively affected in low-SNR regimes [18].
Here, we define the SNR as E{||x(t)||2}

σ2 , where E{||x(t)||2}
and σ2 denote the power of signal and noise, respectively. In
the following, we use that the non-convex log-likelihood cost
function (7) has a tight upper bound in low-SNR regimes [19].

Proposition 1. Eq. (7) is the sum of the concave term log |Σy|
and the convex term 1

T

∑>
t=1 y(t)>Σ−1y y(t), and the best

convex upper bound for (7) in low-SNR regimes can be written
as

Lconv(γ) = tr(LΓL>) +
1

T

T∑
t=1

y(t)>Σ−1y y(t) . (12)

Proof. The proof follows [19, Proposition 4]. Using that
tr(LΓL>) is the best linear approximation for log |Σy|, we
have that, for low SNR regimes, log |Σy| = tr(LΓL>) +
O(SNR). This means that (12) is tight when SNR→ 0.

The derivative of (12) w.r.t. to γ is

∂

∂γn
Lconv(γ) =

∂

∂γn

[
tr(LΓL>) +

1

T

T∑
t=1

y(t)>Σ−1y y(t)

]

= L>nLn +

(
− 1

γ2n

)[
1

T

T∑
t=1

(µx(t))2n

]
. (13)
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Setting (13) to zero leads to a new update rule for γ:

γn =

√√√√[ 1
T

∑T
t=1(µx(t))2n

]
L>nLn

for n = 1, . . . , N . (14)

We call the algorithm obtained by iterating (4)–(6) and (14),
which is derived by replacing the tangent plane z>γ − z0 in
(9) by the proposed upper bound tr(LΓL>), LowSNR-MM-
Champagne.

IV. SPATIO-TEMPORAL TRADE-OFF THEOREM

In this section, we mathematically show that the achievable
spatial reconstruction performance (in terms of correctly esti-
mating the support of the active brain locations) increases with
sample size; thus, there exists a trade-off between the spatial
reconstruction performance and the number of measurements.
Here we built on recent theory developed for the multiple
measurement vector (MMV) case by [18]. Since the EEG
inverse problem can also be considered as an MMV problem
by assuming samples as multiple measurement vectors, we
can exploit the theory of [18] to formulate an error bound for
the reconstruction of the spatial support of the active brain
sources. We make the following assumptions.
Assumption I (independence): The sources x(t), t =
1, . . . , T are independent and identically distributed (i.i.d.)
zero-mean Gaussian vectors; thus, the prior probability can be
written as P(X|γ) =

∏T
t=1N (0,Γ). The non-zero variances

are bounded as γn ∈ [γmin, γmax], n = 1, . . . , N .
Assumption II (common sparsity): The sources x(t), t =
1, . . . , T are jointly K-sparse, that is, form a row-sparse
matrix, X, with support set |S∗| ≤ K. In other words, the
locations of the active sources does not change across samples.

Proposition 2. Perfect spatial reconstruction is achieved,
if the algorithm can exactly recover the true support, S∗.
Mathematically speaking, a spatial reconstruction error occurs
whenever the recovered support does not exactly match to the
original support set, P(Support(γ̂) 6= S∗).

The following theorem holds for the general MMV case [18]:

Theorem 3 ( [18]). Assuming the preceding EEG source
localization setting and assumptions (I-II) and let γ̂ be the
sparse recovery solution of EM-Champagne method. Then,
the spatial reconstruction error decreases exponentially with
the number of samples available:

P(Support(γ̂) = S∗) ≥ 1− exp(−η
4
T ) ,

provided that the following two conditions are satisfied:

Condition I: The self Khatri-Rao product of the lead-field
matrix, L�L, satisfies the restricted isometry property (RIP)
of order 2k with restricted isometry constant δ�2k, where the
self Khatri-Rao product is defined as (L � L) ∈ RM2×N =
[. . . ,Li ⊗ Li, . . . ], for i = 1, . . . , N , and where Li denotes
the i-th column of L.
Condition II: The number of time samples satisfies T ≥(
c1klog(N)

η

)
, where η = c2( γmin

σ2+γmax
)2(1 − δ�2k), where c1

and c2 are two universal constants. For a lead field matrix
L with columns normalized to unit-norm (as is a common
pre-processing in practice), this leads to the following lower
bound for the number of time samples: T ≥ O(K

5
2 logK/M).

In practice, both conditions may be violated. Therefore, it
is crucial to empirically study the effect of such violations
using simulated data. In Section VI-A, we empirically assess
the RIP property of the Kathri-Rao product of typical lead
field matrices. To deal with the assumption of i.i.d. samples
imposed by the theory, we introduce an adaptive whitening
scheme for correlated samples (e.g. time-series data), which
motivates two additional algorithm variants (see Section V).
The reconstruction performance of all algorithms is compared
in Section VI-B.

V. ADAPTIVE TEMPORAL WHITENING SCHEME

Brain processes change rapidly over time. Therefore, in
order to take advantage of an increased number of samples
while simultaneously satisfying the common sparsity assump-
tion, we need to increase the number of time samples within
a fixed duration of time. This, however, will increase the
correlation between adjacent measurements and thus violate
the i.i.d. assumption. To address this issue, we consider
SBL algorithms that can deal with correlated measurements.
It can be shown [20] that, by incorporating time correla-
tion, the prior distribution of the sources can be written as
P(xtemp|γ,B) ∼ N (0,Σ0), where xtemp = vec(X) ∈ RNT×1
and Σ0 = Γ ⊗ B models the covariance matrix of time-
correlated sources, B ∈ RT×T is a positive definite (P.D.)
matrix modeling the (same) temporal correlation structure for
all sources, and ⊗ denotes the Kronecker product. B can
either be a general P.D. matrix or have a Toeplitz structure,
Bi,j = β|i−j|. The latter case corresponds to modeling the
sources as first order auto-regressive (AR(1)) time series:
xn(t + 1) = βxn(t) +

√
1− β2ξn(t), n = 1, . . . , N ; t =

1, . . . , T with AR coefficient β ∈ (−1, 1) and innovation noise
ξn(t).
The log likelihood function can be formulated as [20]:

L(γ,B) = log|Σtemp
Y |+

[(
ytemp)> (Σtemp

Y

)−1
ytemp

]
(15)

Σtemp
Y = λI + DΣ0D

> , (16)

where ytemp = vec(Y) ∈ RMT×1,D = L ⊗ IT and Σtemp
Y

is the spatio-temporal version of the model covariance matrix
Σy defined in (6). Zhang et. al [21] derived the following
update rules to minimize (15) using the EM method:

γn = [Σx]n,n +
[
(µx)nB−1(µx)>n

]
, n = 1, . . . , N (17)

B̂ =

{∑N
n=1

(µx)
>
n (µx)n
γn

for high SNR∑N
n=1

(µx)
>
n (µx)n
γn

+ θI for low SNR
(18)

B = B̂/||B̂||F , (19)

where ||B̂||F denotes the Frobenius-norm of the matrix B̂ and
where θ is a positive scalar regularization term ensuring that
B̂ is P.D. . Notice that (µx)n ∈ RT is a vector comprising the
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entire T time series of the n-th brain source, [µx(t)]n , for t =
1, . . . , T . In other words, if X̄ = ΓL>(Σy)−1Y denotes the
posterior mean of the sources recovered by EM-Champagne as
defined in (4), then (µx)n is the n-th row of X̄. The algorithm
that is obtained by iterating (17)-(19) until convergence is
called T-EM-Champagne.

In the AR setting, γ is updated as in (17) and the AR-
coefficients are optimized using steepest descent (SD) [22]:

β(new) = β + αtr[(Γ⊗ (BFB)) Σx −N(BF)] , (20)

where α denotes the optimization step size and F = ∂(B−1)
∂β

is obtained numerically throughout the algorithm [23].
Note that the Euclidean distance

[
(µx)n(µx)>n

]
in the

independent setting (8) changes into a Mahalanobis distance[
(µx)nB−1(µx)>n

]
in the correlated setting (17). This can be

shown to be equivalent to performing a temporal whitening of
the sources in each iteration of the algorithm using the current
estimate of the matrix B−

1
2 [20, Page 74]. The resulting quasi-

i.i.d measurements, which satisfy Condition II above, are then
treated according to the standard Champagne algorithm.

VI. NUMERICAL SIMULATIONS

A. Influence of the RIP of the lead field

Since the RIP of a general matrix cannot be computed in
polynomial time [24], we compared the recovery performance
using a realistic EEG lead field likely not exhibiting RIP to the
setting in which random Gaussian matrices (satisfying RIP) are
used as forward models. In each repetition of the experiment,
we generated a random Gaussian matrix, X ∈ R2004×T

representing the brain activity of 2004 brain sources for
different sizes T = 10, 20, 50, 100 and 200 i.i.d. samples.
Apart from K = 3 randomly selected rows representing the
active brain sources all entries of X were set to zero. The
brain sources X were mapped to pseudo-EEG measurements
at 58 sensors, Y, using either a random Gaussian matrix
Φ ∈ R58×2004 or a realistic lead field matrix, L ∈ R58×2004.
This lead field was generated using the New York Head model
[2] taking into account the realistic anatomy and electrical
tissue conductivities of an average human head. Finally, i.i.d.
Gaussian noise E was added to the measurements, so that
the overall SNR (as defined in Section III) was 0 dB. See
[25] for a description of a general simulation framework. We
applied EM-Champagne and measured its performance using
three different measures, the mean squared error (MSE), the
earth mover’s distance (EMD), and the correlation between
the original and reconstructed sources, X̂ and X. The MSE
was defined as MSE =

||X̂−X||2F
||X|| . The EMD measures the cost

needed to map a two probability distributions defined on the
same metric domain (in this case, the power of the true and
estimated source activations defined defined on the cortical
surface of the brain) into each other, see [5], [26]. EMD was
normalized to [0, 1]. The correlation between simulated and
reconstructed source time courses was assessed as the mean
of the absolute correlations obtained for each source, after
optimally matching simulated and reconstructed sources. Each

TABLE I
SOURCE RECONSTRUCTION PERFORMANCE (MEAN ± SEM) OF

EM-CHAMPAGNE FOR DATA GENERATED BY A REALISTIC LEAD FIELD
MATRIX AS WELL AS A RANDOM GAUSSIAN MATRIX UNDER VARIATION
OF THE NUMBER OF TIME SAMPLES. PERFORMANCE WAS MEASURED IN

TERMS OF THE MEAN SQUARED ERROR (MSE), EARTH MOVER’S
DISTANCE (EMD) AND TIME-COURSE CORRELATION (CORR).

MSE EMD Corr

T = 10 0.17± 0.004 0.201± 0.0029 0.970± 0.0011
T = 20 0.11± 0.002 0.181± 0.0021 0.971± 0.0006

Random matrix T = 50 0.07± 0.001 0.159± 0.0019 0.973± 0.0004
T = 100 0.06± 0.001 0.143± 0.0018 0.973± 0.0003
T = 200 0.05± 0.000 0.125± 0.0013 0.974± 0.0002

T = 10 0.77± 0.037 0.177± 0.0041 0.936± 0.0022
T = 20 0.45± 0.028 0.130± 0.0036 0.933± 0.0029

Lead field T = 50 0.23± 0.016 0.086± 0.0024 0.947± 0.0018
T = 100 0.14± 0.008 0.056± 0.0017 0.953± 0.0017
T = 200 0.11± 0.005 0.039± 0.0013 0.957± 0.0015

simulation was carried out 100 times using different instances
of X and E, and the mean and standard error of the mean
(SEM) of each performance measure across repetitions was
calculated.

Table I demonstrates that the source reconstruction perfor-
mance according to all measures increases significantly with
the number of samples for both the realistic lead field and a
random Gaussian forward matrix. A random Gaussian forward
model leads to a lower MSE than the realistic lead field, while
the opposite relationship is observed for the EMD. Notably,
exact recovery of the support, as quantified by the theory for
RIP matrices and measured by the MSE, is rarely necessary in
practice, and a reconstruction close (in terms of the Euclidean
distance in 3D brain space) to the true solution (as measured by
the EMD) is more relevant. The EMD performance achieved
using the realistic lead field is, therefore, encouraging.

B. Comparison of algorithms for correlated samples

We investigated the ability of the various algorithms to
reconstruct source activations from correlated samples. To
this end, we generated time-dependent non-stationary sources
in the frequency domain. For this purpose, K = 2 source
locations were selected. Source activations at these locations
were generated as lowpass-filtered white noise using a second
order digital Butterworth filter with cutoff frequency chosen
at random between 10 and 15 Hz, assuming a sampling rate
of 200 Hz. The number of time samples was fixed to T = 20.

For this simulation, we used the same realistic lead field as
in Section VI-A. We again added i.i.d. Gaussian noise at SNR
= 0 dB to the measurement, and we evaluated the MSE, EMD
and Corr performance metrics across 100 repetitions of the
experiment. We compared the performance of LowSNR-MM-
Champagne, T-EM-Champagne and AR-EM-Champagne pre-
sented here with commonly used baseline methods including
EM- and MM-Champagne [14], [15], eLORETA [4], and S-
FLEX [8]. The noise variance, σ2, was assumed to be known
(e.g., from a baseline measurement), and the regularization
parameters of all methods were set accordingly. The pruning
threshold γthresh was set to γthresh = 10−3 for all Champagne
variants in order to ensure a fair comparison. Convergence
was defined for all algorithms if the relative improvement
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TABLE II
SOURCE RECONSTRUCTION PERFORMANCE (MEAN ± SEM) OF THE
PROPOSED ALGORITHMS IN COMPARISON TO BASELINE METHODS.

PERFORMANCE WAS MEASURED IN TERMS OF MEAN-SQUARED ERROR
(MSE), EARTH MOVER’S DISTANCE (EMD), AND TIME-COURSE
CORRELATION (CORR). PERFORMANCE SCORES SIGNIFICANTLY

OUTPERFORMING ALL OTHERS ARE HIGHLIGHTED IN BOLD FACE.

MSE EMD Corr

eLORETA 1.08 ± 0.007 0.329 ± 0.0037 0.954 ± 0.0015
S-FLEX 0.19 ± 0.004 0.207 ± 0.0033 0.964 ± 0.0011
EM-Champagne 0.15 ± 0.003 0.162 ± 0.0027 0.965 ± 0.0012
MM-Champagne 0.14 ± 0.003 0.161 ± 0.0027 0.965 ± 0.0012
LowSNR-MM-Champagne 0.14 ± 0.003 0.141 ± 0.0025 0.967 ± 0.0011
T-EM-Champagne 0.09 ± 0.003 0.055 ± 0.0023 0.968 ± 0.0011
AR-EM-Champagne 0.10 ± 0.004 0.044 ± 0.0024 0.955 ± 0.0032

of the objective function was less than 10−8. A maximum
of 2000 iterations was carried out in case no convergence
was reached. As can be seen from Table II, LowSNR-MM-
Champagne is on par with the conventional EM- and MM-
Champagne variants in terms of the MSE, but is characterized
by improved localization performance in terms of the EMD.
By exploiting temporal correlations in the signals, T-EM-
Champagne and AR-EM-Champagne further outperform all
competing methods in terms of the MSE and EMD.

VII. CONCLUSION

In this work, we have proposed sparse Bayesian learning
algorithms for solving the EEG inverse problem, which are
suitable in low-SNR settings and if the available samples
are correlated. Using realistic simulations, we have shown
that these algorithms can exploit the temporal structure in
neurophysiological time series to achieve better reconstruction
performance than the state-of-the-art. In the future, we aim to
provide a theoretical analysis of the convergence properties of
the proposed methods and to demonstrate their efficacy on real
data.
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