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Abstract—Micro-Doppler induced by mechanical vibrating or
rotating structures in a radar target is possibly useful for its
detection, classification and recognition. In a previous work,
pseudo-Zernike moments (PZMs) were used as micro-Doppler
features for classification. Despite of their promising classification
rates, the choice of PZMs is debatable because other types of
moments exist. In this paper, our purpose is to compare various
kinds of micro-Doppler features such as Zernike moments, PZMs,
orthogonal Mellin-Fourier moments, Legendre moments and
Krawtchouk moments in order to evaluate which moments are
the most relevant in terms of reconstruction ability, computa-
tional cost and micro-Doppler classification rate. Advantages and
drawbacks of each family of moments are also given. Through
the simulations we carried out, when the signal is disturbed by
an additive white noise and the signal-to-noise ratio is low, the
use of Krawtchouk moments as micro-Doppler features turns out
to be the best compromise.

Index Terms—Radar, Micro-Doppler, Features, Moments,
Classification.

I. INTRODUCTION

In radar processing, backscattered signals can include
micro-Doppler information due to the mechanical vibrations
and/or the rotations of some structures of the target [23]. In
some cases, this phenomenon is considered as a disturbance
that must be removed [24]. In other situations, this signature
can be useful for the detection of the target, its recognition
and its classification [9]. Some approaches [8], [21], [5] have
been proposed based on time-frequency analysis to extract the
micro-Doppler component from the received signal. In [4],
the authors consider the so-called cadence velocity diagram
(CVD), which is an image deduced from the spectrogram of
the micro-Doppler signal. Then, as this is usually done in
the field of vision or pattern recognition, they suggest using
moments, which correspond to a weighted sum of the image
pixels’ intensities, to describe the CVD. These latter are used
for classification. This method shows great promises for its
reconstruction and classification ability, but only the pseudo-
Zernike moments (PZMs) have been considered. This choice
is debatable because various types of moments exist. They can
be sorted by taking into account the orthogonality property:

1) The non-orthogonal moments include the general mo-
ments of order n + m. They consist of weighting
the image intensity function f(x, y) by a polynomial
function Vn,m(x, y) and summing over all the values of
x and y. The most basic choice is the power basis where
Vn,m(x, y) = xnym that leads to the so-called geometric

moments. The image centroid can be deduced from some
of them. Another popular choice for the polynomial
basis is Vn,m(x, y) = (x+ jy)n(x− jy)m which leads
to the complex moments. Nevertheless, despite of their
low computational cost, they may be rotational variant
and highly sensitive to noise. In addition, due to the
redundancy induced by their non-orthogonal property,
reconstruction is difficult.

2) The so-called orthogonal moments can be split into
two families: the continuous and the discrete ones.
In addition, some of them are orthogonal on a unit
disk whereas others are orthogonal on a rectangle. The
Jacobi-Fourier moments (JFMs) are based on an image
mapped into a unit disk. Zernike moments (ZMs), its
variant known as PZMs and the orthogonal Fourier-
Mellin moments (OFMMs) are special cases of JFMs
since the radial polynomials of the ZMs, the PZMs and
the OFMMs belong to the Jacobi polynomials [13]. The
Gegenbauer polynomials, also known as ultra-spherical
polynomials of order λ, are orthogonal over the square
[−1, 1] × [−1, 1]. When λ = 0.5, they correspond to
Legendre polynomials. These latter are used to define the
Legendre moments (LMs). Both Gegenbauer and Jacobi-
Fourier moments form ”continuous” families as their
calculations are based on the computations of double
integrations. As an alternative, discrete orthogonal basis
such as Dual Hahn moments, Racah moments and
Krawtchouk moments (KMs) can be used.

In this paper, micro-Doppler signals are analyzed and clas-
sified by following the same processing chain as the one
proposed in [4]. Our purpose is to compare representatives
of each family of orthogonal moments, namely ZMs, PZMs,
OFMMs, LMs and KMs, in order to analyze which method is
the most relevant in terms of reconstruction and classification
ability as well as computational cost, when the signal is
disturbed in the time-domain by an additive white noise. The
rest of this paper is structured as follows: Section II recalls
the main steps of the approach initially proposed in [4]. Each
type of moment is presented. In section III, simulation results
and comments are provided. Conclusions are then given.
In the following, ∗ is the conjugate, n! is the factorial of n, Γ(.)

is the Gamma function, (a)k = Γ(a+k)
Γ(a) is the Pochhammer

symbol, sinc(.) denotes the cardinal sine function and δ(n,m)
is the Kronecker delta function.
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II. MAIN STEPS OF THE PROCESSING CHAIN

The processing chain, initially proposed by Clemente in [4],
operates with the following steps:

A. Step 1: time-frequency (TF) representation
The micro-Doppler signal is first pre-processed to be zero-

mean and unit-variance. Then, instead of analyzing a large
amount of samples in the time-domain, a time-frequency
analysis is considered to point out the variations of the
micro-Doppler signal. Several methods can be used from the
spectrograms, based on FFT or other spectral analysis methods
(Music or Capon), to the Cohen classes.

B. Step 2: from TF representation to CVD
The CVD provides a measure of how often values of the

Doppler frequency are repeated over time. It is obtained by
computing the spectrogram of the time-frequency representa-
tion along each frequency bin. It is an image, with cadence in
abscissa x and frequency in ordinate y.

C. Step 3: feature extraction based on moments
The CVD is projected onto a set of predefined images

leading to the moments. In [4], PZMs were considered. Before
presenting the three families of moments, let us first define the
Jacobi polynomials. They will be useful in the following.

Pn(α, β, x) =
Γ(α+ n+ 1)

Γ(α+ β + n+ 1)!
(1)

×
n∑
k=0

Γ(n+ k + α+ β + 1)!

k!(n− k)!Γ(α+ k + 1)!

(
x− 1

2

)k
The polynomials Pn(α, β, x) and Pm(α, β, x) are orthogonal
with respect to the weights (1−x)α(1+x)β with x ∈ [−1, 1].

1) JFMs including ZMs, PZMs and OFMMs:
JFMs have been widely used as feature extractors of an image
in several applications from face recognition [6] to image
denoising [15]. Denoted as MJFM

n,m , JFMs of non-negative
integer order n and repetition m, which is an integer positive
or negative, are computed on the image f(r, θ) on the unit
disk with polar coordinates (r, θ), with r =

√
x2 + y2 and

θ = arctan( yx ). They correspond to the projection of the
CVD onto the kernel functions, Jn,m(p, q, r, θ) with p and q
real parameters:

MJFM
n,m =

∫ 2π

0

∫ 1

0

f(r, θ) J∗n,m(p, q, r, θ)rdrdθ (2)

Using [1], the kernel function Jn,m(p, q, r, θ) is expressed as
the product of the radial factor bn(p, q, r)Jn(p, q, r) and the
angular (Fourier) factor ωm(θ) = 1√

2π
ejmθ:

Jn,m(p, q, r, θ) = bn(p, q, r)Jn(p, q, r)ωm(θ) (3)

where Jn(p, q, r) is a shifted Jacobi polynomial1 and
bn(p, q, r) are weight functions guaranteeing the radial func-
tion to be orthonormal on the unit disk:

Jn(p, q, r)=
Γ(n+ 1)Γ(q)

Γ(p+ n)

n∑
k=0

Γ(n+ k + p)(−r)k

Γ(k + 1)Γ(n− k + 1)Γ(q + k)

(4)

1Indeed, given (1) and by setting α = q − 1 and β = p − q, Jn(p, q, r)
can be expressed from Pn up to a multiplicative factor and a shift.

and

bn(p, q, r)=

[
Γ(q + n)Γ(p+ n)(p+ 2n)

Γ(n+ 1)Γ2(q)Γ(p− q + n+ 1)
(1 − r)p−qrq−2

]1/2
(5)

In this case, ZMs, PZMs, OFMMs correspond to specific
values of p and q, as shown in Table I.

TABLE I: Different cases under study

Moments p q

ZMs |m|+ 1 |m|+ 1
PZMs 2|m|+ 2 2|m|+ 2

OFMMs 2 2

Remark 1: Given (3), (4) and (5) and for p and q chosen as
in Table I, it can be easily shown that:

MJFM
n,m = (MJFM

n,−m)∗ (6)

Remark 2: Three main difficulties occur with JFMs:
• As the CVD images are defined in the Cartesian coordi-

nate system, they must be pre-processed to fit the unit-
circle. This leads to quantization error.

• The double integrations are approximated by double
summations. These latter must be computed accurately
to preserve as much as possible properties such as the
orthogonality, the scale and rotation invariance of the
moment magnitudes.

• As the moments depend on the Gamma function, directly
computing high-order moments may be intensive and lead
to numerical instability.

To address the three above issues, the reader may refer to [19]
[20] [12] [4] [18].

2) Gegenbauer Moment family including LMs:
First of all, let us define the Gegenbauer polynomials G(λ)

n (x)
of order n and scaling parameter λ > − 1

2 . Various expressions
exist, based on the hypergeometric function for instance. The
Gegenbauer polynomials can be also deduced from the Jacobi
polynomials introduced in (1) with α = β = λ− 1/2:

G(λ)
n (x) =

(2λ)n

(λ+ 1
2
)n
Pn

(
λ− 1

2
, λ− 1

2
, x

)
(7)

Gegenbauer polynomials are orthogonal over the square
[−1, 1]× [−1, 1] with the weights wG(x, λ) = (1− x2)λ−

1
2 :∫ 1

−1

wG(x, λ)G(λ)
n (x)G(λ)

m (x)dx = ρG(n, λ)δ(n,m) (8)

with ρG(n, λ)= 2πΓ(n+2λ)
22λn!(n+λ)![Γ(λ)]2

the normalization constant.
Legendre polynomials2 and Chebyshev polynomials of the 1st

or 2nd kind correspond to specific values of λ, as shown in
Table II.
Then, orthogonal Gegenbauer moments MG

n,m of order (n,m)
of the CVD f(x, y) are defined as follows:

MG
n,m =

1

ρG(n, λ)ρG(m,λ)
× (9)∫ 1

−1

∫ 1

−1

f(x, y)G(λ)
n (x)G(λ)

m (y)wG(x, λ)wG(y, λ)dxdy

2Another definition is the following:G
( 1
2
)

n (x) = 1
2nn!

dn[(x2−1)n]
dxn

, where
dn[.]
dxn

denotes the nth derivative with respect to x and with G
( 1
2
)

0 (x) = 1.
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Remark: As explained for JFMs, the double integration must
be replaced by a double summation to take into account all
the pixels of the image. This leads to approximated Gegen-
bauer moments. Several authors have therefore focused their
attentions on this issue for the last years [7] [14].

TABLE II: Polynomials for specific values of λ

Polynomials λ

Legendre polynomials 1/2
Chebyshev polynomials of the first kind 0

Chebyshev polynomials of the second kind 1

3) Discrete family - Krawtchouk moments (KMs):
KMs have been used in various applications such as face

recognition [11]. The Krawtchouk polynomials of order n for
Nx discrete samples x = 0, ..., Nx − 1 is defined by:

Kn(x, µx, Nx − 1) = 2F1(−n,−x,−(Nx − 1),
1

µx
) (10)

where 2F1(a, b, c, z) =
∑+∞
k=0

(a)k(b)k
(c)k

zk

k! denotes the hyper-
geometric function and µx is in the interval ]0, 1[. This latter
plays a key role to focus on a region of interest [22].
Given the weights wK(x, µx, Nx − 1) = (Nx−1)!

(Nx−1−x)!x! (µx)x

(1 − µx)Nx−1−x, the Krawtchouk polynomials satisfy the
orthogonality property:

Nx−1∑
x=0

wK(x, µx, Nx − 1)Kn(x, µx, Nx − 1)Km(x, µx, Nx − 1)

(11)
= ρK(n, µx, Nx − 1)δ(n,m)

where ρK(n, µx, Nx − 1) = (−1)n
(

1−µx
µx

)n
n!

(−Nx+1)n
. The

normalized version of the Krawtchouk polynomials are given
by:

Kn(x, µx, Nx−1) = Kn(x, µx, Nx−1)

√
wK(x, µx, Nx − 1)

ρK(n, µx, Nx − 1)
(12)

At this stage, given the digital image f(x, y) with x =
0, ..., Nx − 1 and y = 0, ..., Ny − 1, the 2-D KMs are defined
as follows:

MK
n,m =

Nx−1∑
x=0

Ny−1∑
y=0

f(x, y)Kn(x, µx, Nx − 1)Km(y, µy, Ny − 1)

(13)
They are position, scale and rotational invariant.

D. Step 4: classification

At this stage, up to a given maximum order nmax and a
maximum repetition mmax, the moduli of orthogonal moments
are computed and stored in a vector F . For JFMs, given (6),
only positive repetition values m are considered.
After normalizing the vector F , various classification ap-
proaches can be considered including K-nearest neighbor
(KNN) or support vector machine (SVM).

III. COMPARATIVE STUDY

Different variants of the above processing chain based on
ZMs, PZMs, OFMMs, LMs and KMs are compared. We took
advantage of recent papers [18] [3] [17] [16] [2] to accurately
compute the moments, to reduce as much as possible their
computational costs and to avoid numerical instabilities.

A. Simulation protocols

Let us consider a set of data defined as the sum of the returns
from Nb aircraft propeller blades [10]. The kth sample of the
signal s(k) disturbed by an additive zero-mean white noise
b(k) is defined, with k = 0, ..., N − 1, as follows:

y(k) = s(k) + b(k) (14)

=

Nb−1∑
l=0

ArLsinc

(
4πf0

c

L

2
cos(θ)sin

(
wr

k

fs
+

2πl

Nb

))
× ej

[
wc

k
fs
− 4πf0

c

(
R+v k

fs
+
L1+L2

2 cos(θ)sin
(
wr

k
fs

+ 2πl
Nb

))]
+ b(k)

where L1 and L2 are respectively the distance of the blade
roots and tips from the center of the rotation. Moreover, by
introducing L the main blade length, L2 = L+L1. In addition,
wc and wr are the radian frequencies of the transmitted signal
and of the rotation respectively. Ar denotes the scale factor
and fs = 10240Hz the sampling frequency. R, v, and θ are
the range of the center of rotation, the radial velocity of the
center of rotation with respect to the radar, and the angle
between the plane of rotation and the line of sight from the
radar to the center of rotation respectively. f0 = 5GHz and
c = 3× 108m/s denote the radar operative frequency and the
speed of light respectively. Four classes have been simulated,
each comprises 3000 realizations of N = 10240 samples with
the parameters given in Table III. The rotor center location is
(0, 0, 0) and the radar location is (500, 0, 500).

TABLE III: Parameters defining 4 classes of signals

Class Nb L (m) L1 (m) L2 (m) wr (rad/s)

C1 2 4 0.5 4.5 10
C2 2 6 0.5 6.5 6
C3 3 4 0.5 4.5 10
C4 3 6 0.5 6.5 6

The resulting spectrograms and CVDs of each class are given
in Fig. 1, where the signal-to-noise-ratio (SNR), i.e. the ratio
between the powers of s and b, is equal to 5 dB.
Concerning the classification step, KNN is here used with 70%
of the simulated data for the training set and 30% for the test
set. The rate of correct classification is averaged over 375
randomly-drawn training sets.

B. Results and comments

1) About step 3 dealing with feature extraction:
Let us analyze the decomposition of the image using various

types of moments with different orders. —————————
———————————————————–
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TABLE IV: Reconstructed CVD of the micro-Doppler (class C2) based on each family of moments versus order
Original Moments Order (nmax)
CVD family 10 20 30 40

ZMs

ε = 0.0790 ε = 0.0406 ε = 0.0253 ε = 0.0171

PZMs

ε = 0.0553 ε = 0.0256 ε = 0.0137 ε = 0.0082

OFMMs

ε = 0.1302 ε = 0.1228 ε = 0.1193 ε = 0.1184

LMs

ε = 0.3419 ε = 0.7161 ε = 0.8757 ε = 0.8687

KMs
µx = µy = 0.5

ε = 0.4419 ε = 0.1110 ε = 0.0119 ε = 0.0028

The reconstructed image, f̂(x, y), based on a finite number of
kernels, can be obtained as follows:

f̂(x, y) =
∑
n

∑
m

M (.)
n,mΨn,m(x, y) (15)

In (15), the moments M
(.)
n,m are equal to MJFM

n,m , MG
n,m

and MK
n,m when the kernels Ψn,m(x, y) respectively corre-

spond to Jn,m(p, q, x, y) with p and q defined in Table 1,
G

(1/2)
n (x)G

(1/2)
m (y), and Kn(x, µx, Nx−1)Km(y, µy, Ny−1).

In this case, the normalized error made on the reconstructed
image, denoted as ε, can be expressed as follows:

ε =

∑
x

∑
y

(f(x, y) − f̂(x, y))2∑
x

∑
y

(f(x, y))2
(16)

As described in the papers presenting the algorithms comput-
ing OFMMs and LMs, very high intensities may appear in
the vicinity of the center of the unit disk of the reconstructed
images when using OFMMs. With LMs, as the reconstructed
images may have very high intensities at the edge of the
unit disk, the corresponding pixels have been removed in the

figures given in Table IV to make the visual comparison easier.
These phenomena have a strong impact on the reconstruction
error. For the other methods, given Table IV, the higher the
order is, the smaller ε is and the larger the number of details of
the image can be obtained. According to the various tests we
did for the different classes, the reconstruction error becomes
the smallest most of the time with KMs when the order
becomes higher.
Although no detail can be given about the computational cost
for the lack of space, KMs provides the best compromise in
terms of computational cost and accuracy.

2) About step 4 dealing with classification:
In Table V, the results are good even for small orders.

Selecting large orders is not useful for this simulation protocol.

IV. CONCLUSIONS AND PERSPECTIVES

A comparative study of different types of moments is carried
out to classify micro-Doppler features when the signal is
disturbed by an additive white noise. KMs turn out to be good
candidates. The simulation protocol considered serves as a first
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Fig. 1: Examples of spectrograms and CVDs for the 4 classes
with SNR = 5 dB

TABLE V: Average correct-classification rate (%)

Moments Order
family 1 2 3 4 5 6 7 8

ZMs 84.2 99.6 99.7 100 100 100 100 100

PZMs 94.4 99.9 100 100 100 100 100 100

OFMMs 91.9 99.3 99.9 99.9 99.9 99.9 99.9 100

LMs 80.1 94.9 96.8 99.1 99.4 99.8 99.9 99.9

KMs 98.8 100 100 100 100 100 100 100

step in our study. The next step is to provide a theoretical
analysis to explain why KMs are more relevant especially for
small orders. Then, we will evaluate the relevance of this ap-
proach, by applying other time-frequency analysis, analyzing
other moments (such as the Chebyshev, Dual Hahn and Racah
ones), using other classification methods, considering time-
variations of some parameters and more realistic disturbances
such as some clutter and applying the method to real data.
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