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Abstract—An exterior (direct source) and interior (reverber-
ant) sound field separation method using a convex optimization
algorithm is proposed. Extracting the exterior sound field from
mixed observations using multiple microphones can be an effec-
tive preprocessing approach to analyzing the sound field inside
a region including sources in a reverberant environment. We
formulate signal models of the exterior and interior sound fields
by exploiting the signal characteristics of each sound field. The
interior sound field is sparsely represented using overcomplete
plane-wave functions. Two models using harmonic functions
and a low-rank structure are proposed for the exterior sound
field. The separation algorithms for each model are derived
by the alternating direction method of multipliers. Numerical
simulation results indicate that higher separation accuracy than
that for existing methods can be achieved by the proposed method
with a small number of microphones and a flexible microphone
arrangement.

I. INTRODUCTION

When analyzing a sound field inside a region of interest
including sound sources, the interference of sound waves
incoming from outside of the region, such as reverberation, can
significantly affect the analysis. For example, the measurement
of loudspeaker characteristics [1], the visualization of sound
field (i.e., acoustic holography) [2], [3], and source identifica-
tion (i.e., source localization and/or reconstruction of source
field) [4]–[6] become extremely difficult tasks in a reverberant
environment. Extracting a direct source field, i.e., the exterior
sound field of a region, from mixed observations can be
an effective preprocessing approach for these analyses. We
address the separation problem of exterior (direct source) and
interior (reverberant) sound fields using multiple microphones.

Previous studies of sound field separation were mainly
based on the discretization of integral equations of sound prop-
agation. Bi et al. [1] proposed a method based on the equiv-
alent source method (ESM) [7]–[9], which can be regarded
as the discretized form of the single layer potential [10].
By using microphones on two-layer surfaces adjacent to the
boundary of a region, the exterior and interior sound fields are
approximated by the sum of imaginary monopoles (equivalent
sources) placed on an imaginary layer. By estimating the
amplitudes of the equivalent sources from the observed signals,
exterior and interior sound fields can be separately obtained.
The method proposed in [11] is based on sound field repre-
sentation in a harmonic domain. By arranging microphones
on two spherical layers, the harmonic coefficients of each

sound field are estimated by calculating a surface integral
using the sound pressures obtained by the microphones. These
methods basically require a large number of microphones for
accurate calculation of the integral equations. Furthermore,
the microphones have to be uniformly arranged on the two
layers. These limitations on the number of microphones and
microphone geometries significantly decrease their practical
applicability.

We propose an exterior and interior sound field separation
method using a convex optimization algorithm. Signal models
incorporating a convex relaxation are formulated by exploiting
the signal characteristics of each sound field. The interior
sound field is sparsely represented by overcomplete plane-
wave functions. A representation using harmonic functions
and a low-rank structure is proposed for the exterior sound
field. Then, two types of convex optimization problem are
formulated and algorithms based on the alternating direction
method of multipliers (ADMM) [12]–[14] are derived. Nu-
merical simulations are conducted to evaluate and compare
the proposed signal models and algorithms with the existing
methods.

II. STATEMENT OF PROBLEM

Suppose that a closed region Ω including sound sources
is set inside a measurement room. The sound pressure of
frequency ω at position r is denoted as u(r, ω). Inside a region
adjacent to ∂Ω (the boundary of Ω) not including any sources,
u(r, ω) is represented as the sum of the exterior and interior
sound fields of Ω, uE(·) and uI(·), respectively, as

u(r, ω) = uE(r, ω) + uI(r, ω). (1)

We hereafter omit ω for notational simplicity.
We assume that M microphones are set adjacent to ∂Ω, for

example, on two-layer surfaces as in Fig. 1. The vector of the
observed signals consisting of u(rm) with the mth microphone
location rm (m ∈ {1, . . . ,M}) is denoted as y ∈ CM . From
(1), y can also be represented as the sum of the exterior and
interior sound field components, x ∈ CM and z ∈ CM , as

y = x+ z. (2)

We here assume that T time frames of microphone obser-
vations are available. By denoting the index of the time
frame as t ∈ {1, . . . , T}, the signal vectors of the tth time

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2567



Fig. 1: Separation of exterior and interior sound fields using
microphones adjacent to boundary of Ω.

frame are represented by subscript t as yt, xt, and zt. When
the matrices consisting of each signal vector are defined as
Y := [y1, . . . ,yT ] ∈ CM×T , X := [x1, . . . ,xT ] ∈ CM×T ,
and Z := [z1, . . . , zT ] ∈ CM×T , (2) can be reformulated as

Y = X+ Z. (3)

Our objective is to separate the observed signals Y into
the exterior and interior sound field components X and Z,
respectively, as in (3).

In the ESM [1], two imaginary layers are set inside and
outside ∂Ω, and uE(·) and uI(·) are approximated by the sum
of imaginary monopoles on the inner and outer imaginary
layers, respectively. The amplitudes of these equivalent sources
are determined by matching them with the microphone obser-
vations. The theoretical basis of this technique can be regarded
as the discretization of the single-layer potential [10], which
is an integral equation for representing a homogeneous sound
field. However, a large number of microphones is generally
required for accurate separation [1]. The array geometry of
the microphones must be two layers on ∂Ω. The method
proposed in [11] is based on the approximation of uE(·)
and uI(·) by spherical harmonic functions. The harmonic
coefficients are estimated by calculating the surface integral of
u(·). This method also requires a large number of microphones
since the accuracy of the surface integral strongly depends on
the number of microphones and the frequency. A two-layer
spherical microphone arrangement is required to calculate this
integral.

III. SIGNAL MODELS FOR SOUND FIELD SEPARATION

We formulate the separation problem of Y into X and
Z as a convex optimization problem exploiting the signal

characteristics of the exterior and interior sound fields. This
strategy enables a more flexible geometry of the microphones
and reduces the number of microphones.

We introduce signal models for the interior and exterior
sound fields. The interior sound field is assumed to be sparse
in the plane-wave domain. Two models are proposed for the
exterior sound field: representation by harmonic functions and
by low-rank signals. For simplicity, a two-dimensional (2D)
sound field is assumed; however, the proposed method can
be extended to the three-dimensional (3D) case with several
modifications.

A. Signal Models for Interior Sound Field

We assume that the interior sound field can be sparsely
represented in a plane-wave domain. According to [15], a
homogeneous sound field in a certain star-shaped region can
be well approximated by a limited number of plane waves,
which has been successfully applied in various contexts [3],
[16], [17]. Therefore, the interior sound field uI(r) can be
sparsely decomposed by using overcomplete plane-wave basis
functions eikl·r (l ∈ {1, . . . , L}) as

uI(r) ≈
L∑

l=1

sle
ikl·r, (4)

where the wave-vectors kl are chosen uniformly on the circle
of radius k in the wave-number domain, and a limited number
of expansion coefficients sl have nonzero values. By denoting
the plane wave dictionary matrix as W ∈ CM×L, whose
elements consist of plane-wave basis functions, the interior
sound field component Z is represented as

Z = WS, (5)

where S ∈ CM×L will have a sparse structure. When the
source positions and acoustic characteristics of the room are
assumed to be static during T time frames, each column of S
will have nonzero values at the same indexes. Then, S can be
assumed to be row-sparse.

B. Signal Models for Exterior Sound Field

We introduce two types of signal model for the exterior
sound field. The first model is a representation using circular
harmonic functions. By denoting the position vector in polar
coordinates as r = (r, ϕ), uE(r) can be expanded as

uE(r) =
∞∑

n=−∞
gnHn(kr)e

inϕ, (6)

where Hn(·) is the nth-order Hankel function of the first kind,
k (= ω/c) is the wave number, and c is the sound velocity.
By truncating order n at an appropriate number N , uE(r)
will be well approximated [18]. Then, X can be decomposed
by using the dictionary matrix of circular harmonic functions
D ∈ CM×(2N+1). From (5) and (6), (3) can be represented as

Y = DG+WS, (7)
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where G ∈ C(2N+1)×T consists of the expansion coefficients
of the circular harmonics. The signal decomposition based
on model (7) can be achieved by solving the following
optimization problem:

minimize
G,S

∥G∥F + λ∥S∥1,2

subject to ∥DG+WS−Y∥2F = 0, (8)

where ∥·∥F is the Frobenius norm and ∥·∥1,2 is the ℓ1,2-norm
defined as

∥S∥1,2 =
L∑

l=1

∥Sl,·∥2. (9)

Here, Sl,· represents the lth row of S. The ℓ1,2-norm is
typically used to induce row-sparsity of the matrix because
the optimization problem becomes convex [19].

The second model is based on the assumption that the
exterior sound field components have a low-rank structure.
The exterior sound field component X is represented as the
direct product of the source signals and their transfer functions;
therefore, when the source signals are mutually uncorrelated,
the rank of the covariance matrix, XXH, will approximately
correspond to the number of direct sources inside Ω. The
signal decomposition based on this model can be achieved
by solving the following optimization problem:

minimize
X,S

∥X∥∗ + λ∥S∥1,2

subject to ∥X+WS−Y∥2F = 0, (10)

where ∥ · ∥∗ represents the nuclear norm, which is the tightest
convex lower bound of the rank function [20].

IV. SIGNAL DECOMPOSITION ALGORITHM USING ADMM
The optimization problems for the two models, which are

hereafter referred to as the Frobenius–sparse (FS) and Low-
rank–sparse (LS) models, are formulated as convex problems.
Therefore, ADMM can be applied to solve these problems with
high computational efficiency. We here describe the derivation
of the decomposition algorithms for the FS and LS models
using ADMM.

A. Decomposition Algorithm for FS model
For the FS model (8), we define the augmented Lagrangian

function LFS as

LFS(G,S,Θ) = ∥G∥F + λ∥S∥1,2

+ ⟨Θ,DG+WS−Y⟩+ 1

2ρ
∥DG+WS−Y∥F , (11)

where ⟨·, ·⟩ represents the inner product, Θ is the Lagrangian
multiplier, and ρ > 0 is a constant parameter. In ADMM, each
variable is alternately updated, starting with an arbitrary initial
value, as follows:

G(i+1)= argmin
G

LFS(G,S(i),Θ(i))

S(i+1)= argmin
S

LFS(G
(i+1),S,Θ(i))

Θ(i+1)= Θ(i) +
1

ρ
(DG(i+1)+WS(i+1)−Y)

, (12)

where (i) is the iteration index. The Lagrangian function
for each update is minimized for one variable while fixing
the other variables, which can be efficiently computed using
proximal operators [21].

The update of G can be derived as

G(i+1)= argmin
G

[
∥G∥F +

1

2ρ

∥∥∥P(i)
FS(G) + ρΘ(i)

∥∥∥2
F

]
= T F

ρ/ηD

(
G(i) − ρ

ηD
DH

(
Θ(i) +

1

ρ
P

(i)
FS(G

(i))

))
,

(13)

where P
(i)
FS(G) := DG+WS(i)−Y and ηD > σ2

max(D) is a
constant. Here, σ2

max(D) represents the maximum eigenvalue
of DDH. The proximal operator T F

α (·) is defined as

T F
α (A) := UA max

{
1− α

∥diag(ΣA)∥2
, 0

}
ΣAVA

H, (14)

where UA, ΣA, and VA are obtained by the singular value
decomposition of A as A = UAΣAVA

H. This update rule
is obtained by linearization of the second term of the first line
of (13) at G(i) with a positive constant parameter ηD [13].

The update of S can be derived by a similar procedure as

S(i+1)= argmin
S

[
λ∥S∥1,2 +

1

2ρ

∥∥∥Q(i)
FS(S) + ρΘ(i)

∥∥∥2
F

]
= T ℓ1,2

λρ/ηW

(
S(i)− ρ

ηW
WH

(
Θ(i)+

1

ρ
Q

(i)
FS(S

(i))

))
,

(15)

where Q
(i)
FS(S) := DG(i+1)+WS−Y and ηW > σ2

max(W)

is a constant. The (n, t)th element of T ℓ1,2
β (·) is defined as

{T ℓ1,2
β (B)}n,t := max {∥Bn,·∥2 − β, 0} bn,t

∥Bn,·∥2
, (16)

where bn,t is the (n, t)th element of B. The stopping rule of
(12) can be obtained from the Karush–Kuhn–Tucker (KKT)
condition as [13]

∥DG(i+1) +WS(i+1) −Y∥F /∥Y∥F ≤ ξ1
max(

√
ηD∥G(i+1) −G(i)∥F ,√

ηW ∥S(i+1) − S(i)∥F )/ρ∥Y∥F ≤ ξ2,

where ξ1 and ξ2 are sufficiently small constants.

B. Decomposition Algorithm for LS Model
In a similar manner, the decomposition algorithm for the LS

model based on ADMM (10) can be derived. The augmented
Lagrangian function LLS for (10) is defined as

LLS(X,S,Θ) = ∥X∥∗ + λ∥S∥1,2

+ ⟨Θ,X+WS−Y⟩+ 1

2ρ
∥X+WS−Y∥F . (17)

Again, each variable is alternately updated as
X(i+1)= argmin

X
LLS(X,S(i),Θ(i))

S(i+1)= argmin
S

LLS(X
(i+1),S,Θ(i))

Θ(i+1)= Θ(i) +
1

ρ
(X(i+1)+WS(i+1)−Y).

(18)
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Fig. 2: Experimental setup.

Fig. 3: Relationship between frequency and SDR for uniform
arrangement case.

By applying the proximal operator to the update of X and S,
the following update rule can be derived:

X(i+1)= argmin
X

[
∥X∥∗ +

1

2ρ

∥∥∥P(i)
LS(X) + ρΘ(i)

∥∥∥2
F

]
= T tr

ρ

(
Y −WS(i) − ρΘ(i)

)
(19)

S(i+1)= argmin
S

[
λ∥S∥1,2 +

1

2ρ

∥∥∥Q(i)
LS(S) + ρΘ(i)

∥∥∥2
F

]
= T ℓ1,2

λρ/ηW

(
S(i)− ρ

ηW
WH(Θ(i)+

1

ρ
Q

(i)
LS(S

(i)))

)
,

(20)

where P
(i)
LS(X) := X+WS(i) −Y and Q

(i)
LS(S) := X(i+1)+

WS−Y. The operator T tr
γ (·) is defined as

T tr
γ (C) = UC max {ΣC − γI, 0}VC

H, (21)

where UC, ΣC, and VC are obtained by the singular value
decomposition of C as C = UCΣCVC

H. Again, the stopping
rule of (18) can be obtained from the KKT condition as in (17).

V. EXPERIMENTS

Numerical simulations were conducted to evaluate the
proposed method in a 2D sound field. We compared the
FS and LS models with methods based on the equivalent

Fig. 4: Relationship between frequency and SDR for random
arrangement.

source method (ESM) [1] and circular harmonic decomposi-
tion (CHD) [11]. For reference, the Frobenius–Frobenius (FF)
model, in which the Frobenius norm is imposed on S in (7),
was also used for comparison to validate the effect of the
sparsity assumption.

The room geometry was set as shown in Fig. 2 with the
absorption coefficient of the walls 0.6. The finite element
method (FEM) was used to simulate reverberation in the
room [22]. In FEM, the second-degree polynomial interpo-
lation was used to obtain pressure values between the meshes.
The region Ω was circular with radius R = 1.0 m and the
coordinate origin was set at the center of Ω. Omnidirectional
microphones were arranged on two layers of circular lines on
∂Ω with their centers at the origin. The radii of the inner
and outer layers were 1.0 and 1.075 m, respectively. Sixteen
microphones were set on each layer. Two types of microphone
arrangement, uniform and random arrangements in the angular
direction, were investigated. Two point sources were located
at (0.35,−0.20) m and (0.10, 0.10) m inside Ω. The source
signals were single-frequency sine waves, whose amplitudes
were generated by a circularly symmetric complex Gaussian
distribution. The number of time frames used for separation T
was 100. Gaussian noise was also added to the observations
so that the signal-to-noise ratio (SNR) became 30 dB.

To evaluate the separation accuracy, we define the signal-
to-distortion ratio (SDR) as

SDR = 10 log10
∥Xtrue∥2

∥Xtrue −Xest∥2
, (22)

where Xtrue and Xest are the true and estimated exterior sound
field components, respectively.

The constant parameters ηD and ηW were determined as
ηD = 1.02σ2

max(D) and ηW = 1.02σ2
max(W). The parameter

ρ was adaptively changed at each iteration and had an initial
value of with 4.8 × 10−3 [13]. The order N in (6) was
truncated as N = ⌈kR⌉, where ⌈·⌉ is the ceiling function
[23]. Uniformly sampled plane waves from 0 to 2π rad were
used for the plane-wave dictionary W. In FF, the number of
plane waves was set as 2⌈kR⌉+1 to make the dictionary size
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of W equal to that of D. An overcomplete dictionary was
constructed for FS by using 8⌈kR⌉ plane waves. The balanc-
ing parameter λ was determined so that the SDR becomes the
highest value using the golden section search algorithm [24].
Initial values were set as matrices of all ones. The maximum
number of iterations was 3000.

Figs. 3 and 4 show the SDR with respect to the frequency
of the source signal for uniform and random arrangements,
respectively. For the uniform arrangement, although the SDR
of CHD was relatively high below 400 Hz, it sharply decreased
as the frequency increased. The SDR of ESM was significantly
low at all frequencies. On the other hand, FS achieved
the highest SDR at most of the frequencies and maintained
relatively high SDRs even at high frequencies. The difference
between FS and FF was large at low frequencies although
their SDRs were almost the same above 500 Hz. The SDR
of LS was lower than that of FS and FF at all frequencies.
For the random arrangement, the results of ESM and CHD
are not shown because their SDRs were lower than –20 dB at
all frequencies. On the other hand, relatively high SDRs were
still maintained for the proposed method. In particular, the
SDR of FS was higher than that of FF and LS. These results
indicate that high separation accuracy and a more flexible
microphone arrangement can be achieved by the proposed
method, particularly FS.

VI. CONCLUSION

We proposed an exterior and interior sound field separation
method using a convex optimization algorithm. Signal models
for exterior and interior sound fields are formulated by exploit-
ing the signal characteristics of each sound field. Two models
are proposed for the exterior sound field: representation by
harmonic functions and by low-rank signals. The interior
sound field is assumed to be sparse in the plane-wave domain.
The two optimization problems become convex; therefore, we
derived the algorithm based on ADMM. The numerical simu-
lation results indicated that high separation accuracy compared
with that for the existing methods can be achieved by the
proposed method with flexible microphone arrangement. In
particular, the FS model achieved the highest SDR. Therefore,
the signal models using harmonic functions and overcomplete
plane-wave functions are suitable for representing exterior and
interior sound fields, respectively.
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