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Abstract—In this paper, a new online multiple-input multiple-
output (MIMO) approach based on Maximum Likelihood (ML)
in subband-domain for dereverberation is proposed. Multi-
channel linear prediction filters are estimated to blindly shorten
the Room Impulse Responses (RIRs) between a set of unknown
number of sources and a microphone array. The adaptive filter
is updated using a modified weighted recursive Least Squares
(RLS). To speed up convergence and minimize the influence of
noise, the adaptive algorithm is supervised by a trained Deep
Neural Network (DNN) which predicts the source dominance.
In our experiments, it is proved that the proposed method can
largely reduce the effect of reverberation in high non-stationary
noisy conditions and sensibly improve automatic speech recogni-
tion performance in far-field and high reverberation.

Index Terms—multiple-input multiple-output (MIMO); Maxi-
mum Likelihood (ML); dereverberation; recursive Least Squares
(RLS) ; Deep Neural Network (DNN);

I. INTRODUCTION

There are many offline reverberation reduction solutions

available in the literature (e.g. [1]-[7]). However, many of them

can not be used in real-time applications as they require long

buffer of data to compensate the effect of reverberation or to

estimate inverse filters [1]. In addition, some methods require a

high amount of memory and are not computationally efficient

for low power devices used in embedded applications.

In order to make dereverberation possible in many practical

industrial applications, a number of online adaptive algorithms

have been developed (e.g. [8]-[10]). In [8]-[9] the authors

employed Recursive Least Squares (RLS) method to develop

the adaptive Weighted Prediction Error (WPE) approach. A

Kalman filter approach is proposed in [10] where a multi-

microphone algorithm simultaneously estimates the clean

speech signal and the time-varying acoustic system. In [10],

the recursive expectation-maximization scheme is employed to

obtain both the clean speech signal and the acoustic system in

an online manner. Despite the proposed algorithms have been

shown to effectively reduce the reverberation in an on-line

fashion, both methods do not explicitly model the noise and

can underperform in highly non-stationary noisy conditions.

In addition, the computational complexity and memory usage

for the Kalman algorithm might be unreasonably too high to

be implemented in a low cost embedded device.

In order to fill the gaps and produce a robust on-line

solution for real-world dereverberation, in this work an ML-

based adaptive algorithm using the RLS method is proposed.

To estimate the prediction filters in an online-manner, a new

weighted cost function is proposed which is minimized at each

frame when the speech source is active. The estimation is

supervised using a binary speech presence posterior weight

which is produced by a trained Deep Neural Network (DNN).

In order to improve the accuracy and the convergence speed of

the on-line algorithm, a deterministic function is used to model

the power decay of the late reverberation and the presence

of additive background noise is explicitly accounted in the

model. The algorithm produces a linearly filtered multichannel

speech signal which is non-linearly post-processed and then

fed to a multichannel noise suppression based on the S-IVA

approach [11], in order to further reduce the presence of noise

and improve the overall performance.

The proposed method has the following advantages over

other online-based dereverberation methods.

• It is more robust to reverberation and noise as the pro-

posed online method reduces the effect of reverberation

in two steps namely linear filtering and nonlinear filtering

similar to what is proposed in [6] for batch processing.

• It has better and more accurate estimation of dereverbera-

tion filter in high non-stationary noisy condition by taking

the advantage of a target source dominance estimation,

which is obtained by training a neural network using

extensive prior acoustic data.

• It has fast convergence rate through the use of modified

RLS algorithm.

• It is a MIMO algorithm with no latency and therefore it

can be easily integrated to other linear multichannel noise

reduction methods.

Experimental evaluations with real-world data shows that the

proposed method outperform other existing algorithms when

using standard objective metrics for dereverberation perfor-

mance. Furthermore, it is shown a considerable improvement

of word recognition in a standard industrial test for far-field

automatic speech recognition, when tested in presence of high

reverberation and non-stationary noise.

II. PROBLEM FORMULATION

Let’s assume the input signal for i-th channel is denoted by

xi[n] (i = 1, 2, ...,M ) where M is the number of microphones

and it is assumed that there is one source. Then the input signal

can be modeled in frequency domain as ([4])

Xi(l, k) =

L−1∑
ĺ=0

Hi(ĺ, k)S(l − ĺ, k) + νi(l, k) i = 1, 2, ...,M,

=
D−1∑
ĺ=0

Hi(ĺ, k)S(l− ĺ, k) +

L−1∑
ĺ=D

Hi(ĺ, k)S(l− ĺ, k) + νi(l, k),

= Yi(l, k) +Ri(l, k) + νi(l, k), (1)
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where S(l, k), ν(l, k) and Hi(l, k) are clean speech signal,

background noise signal and the RIR between the source and

i-th microphone in frequency domain, respectively. L, l, and k
are the length of the RIR, the frame index, and the frequency-

bin index, respectively. In (1), the RIR is separated into two

parts namely early reverberation which has length D and late

reverberation part. So the corresponding signal is named as

the desired speech and is denoted by Yi(l, k) and the second

term is named as the reverberant speech and is denoted by

Ri(l, k). The goal is to extract the first term by reducing the

second and the third term in noisy conditions.

In (1), both the clean speech and RIR are unknown. To sim-

plify the task of the dereverberation, Ri(l, k) is approximated

by using the multichannel autoregressive model as given below

[4]

Ri(l, k) ≈
L+D−1∑
ĺ=D

Wi(ĺ−D, k)X(l− ĺ, k)+Rrev
i (l, k), (2)

where Rrev
i (l, k) is the residual late reverberation that can-

not be reduced by linear filtering [6]. In (2) the unknown

parameter to be estimated is an M × 1 prediction filter vec-

tor (Wi(l, k) = [Wi1(l, k), ...,WiM (l, k)]T ) and Xi(l, k) =
[X1(l, k), ..., XM (l, k)]T .

To estimate the prediction filter, the Maximum Likelihood

(ML) approach is used based on three important assumptions

[3],[4].

• The received speech signal has a Gaussian Probability

Density Function (pdf) and the clean part of the received

speech and noise has zero mean with time-varying vari-

ance.

• The frames of the input signal are independent random

variables.

• The RIR is static or it changes slowly.

The ML cost function L(.) using the aforementioned assump-

tions for a given received speech signal of T frames that is

denoted by X̃(k) is given below

L(X̃(k)|W(l, k)) = (3)

−∑T−1
l=0

{
log(|Σ(l, k)|) + (X(l, k)− μ(l, k))HΣ(l, k)−1(X(l, k)− μ(l, k))

}

where Σ(l, k) is the M×M spatial correlation matrix. Also,

according to the above three assumptions, the mean μ(l, k) can

be approximately obtained as

μ(l, k) = [μ1(l, k), ..., μM (l, k)]
T

(4)

μi(l, k) =

L+D−1∑
ĺ=D

Wi(ĺ −D, k)HX(l − ĺ, k) (5)

= Wi(k)
HX(l, k) (6)

X(l, k) = [X1(l −D, k), ..., X1(l −D − L+ 1, k), ...

, XM (l −D, k), ..., XM (l −D − L+ 1, k)]T (7)

Fig. 1. The block diagram of the proposed method.

Wi(k) = [W i
1(0, k), ...,W

i
1(L− 1, k), ...,W i

M (0, k), ...,W i
M (L− 1, k)]T

(8)

where Wi(k) is the prediction filter vector for frequency band

k and i-th channel.

In order to estimate the prediction filter in an online manner,

Σ(l, k) is approximated by scaled identity matrix with the

scale variance of σ(l, k) (i.e. Σ(l, k) = σ(l, k)IM×M ). With

this assumption, (3) and (4) can be simplified as a weighted

Mean Square Error (MSE) optimization problem and the

simplified offline cost function Ci(k) for the i-th channel can

be written as

Ci(k) =

T−1∑
l=0

(Xi(l, k)− μi(l, k))
2

σ(l, k)
. (9)

To estimate the prediction filters in an online-manner, the

weighted MSE cost function will be minimized by updating

Wi(k) at each frame when the source is active. In the absence

of speech, the mean μ(l, k) in (4) is equal to zero and so there

is no need to update the prediction filters. This can be obtained

by multiplying the cost function by a binary speech presence

posterior weight η(l). Furthermore, in order to achieve faster

convergence, the cost function is revised by using a forgetting

factor (0 < λ < 1). Therefore the revised offline cost function

can be written as

Ci(k) =

T−1∑
l=0

η(l)λT−l (Xi(l, k)− μi(l, k))
2

σ(l, k)
. (10)

III. PROPOSED METHOD

The input signals xi[n] are first passed through the sub-

band decomposition to obtain the frequency domain signals

Xi(l, k). In this paper, the frame size of 25 ms with 4 ms

frame shift is used to transform the signal from time-domain

to the frequency domain. The block diagram of the proposed

method is shown in Fig. 1. In the following sections, more

detail is given for each stage of the processing.

A. Binary speech presence posterior weight estimation

A neural network (NN) is used to predict the source activity

posteriors η(l). Namely, the network is trained to estimate

the power ratio between the true target speech and the noisy

mixture. Any machine learning method can be used, such as
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Fig. 2. Late reverberation weights in (15) when b = 4, Ĺ = 35 , L = 45
and ρ = 0.01

recurrent neural networks but we found that a naive multilayer

feed forward NN, often named DNN, is sufficiently accurate

to produce a useful prediction.

As it is clear from Fig. 1, the acoustic feature is estimated

using the subband signals. In this paper, the MFCC feature

plus the delta and double delta each having 12 coefficients

are used to obtain the acoustic feature for training the DNN.

Also the MFCC features of three consecutive non-overlapping

frames are combined to form the input feature F (l) for the

DNN. Two hidden layers of 256 neurons are used with the

hyperbolic tangent as the activation function. The softmax

function is used in the output layer, which has dimension 2.

The relative energy of clean versus the noisy signal is used as

labels for training the DNN.

In this work, we focus on the scenario where the source of

interest is ”speech” while any other non-speech acoustic event

is considered as ”noise”. For the training of the DNN, a large

set of 100k mixtures was generated by randomly combining

noise examples with speech sentences in the TIMIT database.

Noises were collected from different sources and the dataset

was designed to balance the amount of noises belonging to

different categories. Noise signals selected did not contain any

speech, as the scope of the network is only to discriminate

between speech and noise. Two datasets of 10k mixtures were

generated for both cross-validation and testing. After training,

the first channel is used to predict speech presence posterior

weight at the lth frame, indicated as η(l) which is obtained

through the feed-forward propagation of the input features.

Finally the binary speech presence posterior weight is obtained

as η(l) = (η(l) > α), where α is a threshold with values

between 0 and 1 (e.g. 0.5).

B. Input variance estimation

As it is clear from (1), the input variance σ(l, k) has three

components related to desired speech Yi(l, k) (σy(l, k)), the

reverberant speech Ri(l, k) (σr(l, k)) and the noise signal

νi(l, k) (σν(l, k)). Similar to (26) in [6] and by using the as-

sumption of mutually uncorrelated signals for each component

of (1), the input variance can be approximated as

σ(l, k) ≈ σy(l, k) + σr(l, k) + σν(l, k). (11)

Below we describe how to estimate each component in an

efficient way.

1) The first part is the variance for the early reflections.

By using the current estimate for the prediction fil-

ter W i
m(l, k), the linearly dereverberated output signal

Ei(l, k) (i.e. the early reflection signal) is computed as

Ei(l, k) = Xi(l, k)−
M∑

m=1

L−1∑
ĺ=0

Xm(l−D−ĺ, k)W i
m

∗
(ĺ, k).

(12)

The variance is then computed as the average over all the

channels

σy(l, k) =
1

M

M∑
i=1

Ei(l, k). (13)

2) The second part is the variance of the late reverberation.

This variance can be estimated using the following equa-

tion

σr(l, k) =
1

M

L−1∑
ĺ=0

W̃l(ĺ, k)

M−1∑
m=0

|Xm(l −D − ĺ, k)|2,

(14)

where W̃l(ĺ, k) is the late reverberation weights for l-
th frame which is an unknown parameter. To speed up

the on-line convergence, a fixed Rayleigh decay function,

similar to the work presented in [2], is used to model the

weights

R(ĺ) =
ĺ

b2
e

−ĺ

2b2 , ĺ = 0, ..., Ĺ

R(ĺ) = 0, ĺ = Ĺ+ 1, ..., L

W̃ (ĺ, k) =
ρ

L− Ĺ

L−Ĺ−1∑
j=0

R(ĺ − j), (15)

where b = 4, Ĺk = 35 and ρ = 0.01 are the Rayleigh

function parameter, the Rayleigh function length and the

residual reverberation factor, respectively. Fig. 2 shows

an example of the late reverberation weights.

3) The noise variance σν(l, k) is estimated as a recursive

smoothed input power spectrum averaged over all the

channels, when the target speech is not active, i.e. when

η = 0.

C. Prediction filter estimation

To estimate the prediction filter for each channel recursively,

the cost function in (10) is minimized. The update rule is given

below.

wm(0, k) = 0 Φ(0, k) = γIM (16)

RLSgain(l, k) =
η(l)Φ(l−1,k)X(l,k)

λσ(l,k)+η(l)X
H
(l,k)Φ(l−1,k)X(l,k)

(17)
W

(l)
i = W

(l−1)
i +RLSgain(l, k)E

∗
i (l, k) (18)

Φ(l, k) =
Φ(l−1,k)−RLSgain(l,k)X

H
(l,k)Φ(l−1,k)

λ (19)

where γ is a regularization factor that is set to 0.01. Here the

delay and the forget factor are set to D = 2 and λ = 0.998,

respectively. Also the prediction filter length L is set to 45.
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SNR=20 dB SNR=5 dB
Method 0.5 m 1 m 2 m 3 m 4 m avg 0.5 m 1 m 2 m 3 m 4 m avg
unproc 87.60 83.41 73.75 64.57 68.92 75.65 34.14 23.19 13.37 18.68 10.31 19.93
denoise 90.66 89.53 79.39 77.62 72.14 81.86 52.50 41.71 24.80 22.06 18.20 31.85

prop-noVAD 91.30 91.63 86.96 87.28 84.38 88.31 67.79 68.12 53.30 46.22 47.50 56.58
prop 91.95 91.30 86.80 86.63 84.82 88.30 69.89 68.44 54.59 47.83 48.79 57.90

TABLE I
THE WORD ACCURACY SCORES IN PERCENTAGE OBTAINED IN DIFFERENT NOISY REVERBERATION CONDITION FOR THE UNPROCESSED SIGNAL

”UNPROC”, PROPOSED METHOD ”PROP”, THE PROPOSED METHOD WHEN THE SPEECH PRESENCE POSTERIOR IS NOT USED ”PROP-NOVAD”, AND THE

S-IVA METHOD ONLY ”DENOISE”.
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Fig. 3. The FWSegSNR performance of unprocessed signal ”unproc”,
proposed method ”prop”, method of [8]-[9] (wpe) and [10] ”kalman” in
different noisy reverberant conditions when SNR=20 dB.
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Fig. 4. The FWSegSNR performance of unprocessed signal ”unproc”
proposed method ”prop”, method of [8]-[9] ”wpe” and [10] ”kalman” in
different noisy reverberant conditions when SNR=5 dB.

D. Residual reverberation and noise reduction

Similar to [6], to reduce the residual late reverberation

Rrev
i (l, k) in (2) and improve the performance of reverberation

reduction, a heuristic spectral gain g(l, k) =
(σy(l,k)+σν(l,k))

σ(l,k)

is applied to the linear filtered signal Ei(l, k) to further reduce

spectrally the residual late reverberation as

Ẽi(l, k) = Ei(l, k)g(l, k). (20)

From the derverberated signals, the background noise is re-

duced by using the S-IVA algorithm described in [11], which

speaker-microphone distance (m)
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4
SNR=20 dB
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Fig. 5. The SRMR performance of unprocessed signal ”unproc”, proposed
method ”prop”, method of [8]-[9] ”wpe” and [10] ”kalman” in different noisy
reverberant conditions when SNR=20 dB.
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Fig. 6. The SRMR performance of unprocessed signal ”unproc”, proposed
method ”prop”, method of [8]-[9] ”wpe” and [10] ”kalman” in different noisy
reverberant conditions when SNR=5 dB.

produces the enhanced speech signal Ŝ(l, k). Finally, the

enhanced speech signal is transformed back to time-domain

using the subband synthesis.
IV. EXPERIMENTAL EVALUATION

In this section, the performance of the proposed method

in different noisy reverberant environments is evaluated. The

results are obtained using about 8 min of clean speech signal

which is not included in the training set of the DNN model.

This clean signal is played by a loudspeaker and the signals

are recorded at fs = 16 kHz in a room of size 5× 5× 2.5 m

with RT60 of about 430 ms. The recorded reverberant speech
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signals are obtained by two microphones with mutual distance

of 0.08 m when the clean speech is played by a loudspeaker

at different distances of 0.5 m, 1 m, 2 m, 3 m and 4 m from

the center of the microphones. Noisy mixtures are obtained

by playing a stereo TV noise (not included in the training set

of the DNN model) in order to produce a noisy signal at 20

dB and 5 dB SNRs. The thresholds α to obtain the binary

speech presence posterior was set to the values of 0.7 and

0.9, when used with the proposed RLS and S-IVA algorithms,

respectively.

To evaluate the propose method, two objective mea-

sures are utilized namely Frequency-weighted segmental SNR

(FWSegSNR) [12] and Speech-to-reverberation modulation

energy ratio (SRMR) [13]. FWSegSNR is based on the dis-

crepancy between target and reference signals and it is ob-

tained using the critical band analysis with the mel-frequency

filterbank [12]. The FWSegSNR measure is highly correlated

with the perceptual speech quality [12]. SRMR is a non-

intrusive metric for speech quality and intelligibility based on

a modulation spectral representation of the speech signal [13].

The results are averaged over the speech frames and larger

values for both measures indicate better speech quality. In this

paper, the proposed method ”prop” is compared with methods

presented in [8]-[9] ”wpe” and [10] ”kalman” and with the

unprocessed signal ”unproc”. To make the comparison fair for

the competing approaches, the noise reduction method (S-IVA)

along with the pilot signal obtained through the DNN posterior

is applied to the processed signal of ”wpe” and ”kalman”

methods. The results are shown in Fig. 3-6. From Fig. 3-

4, it is clear that the ”wpe” method has better FWSegSNR

performance than the ”kalman” method in high SNR but it

becomes worse in low SNR conditions. When the SRMR is

considered (Fig. 5-6), the ”kalman” method outperforms the

”wpe” in both high and low SNR. On the other hand, the

proposed method consistently outperforms both the ”wpe” and

the ”kalman” method in both high and low SNR conditions

and for any measurement, which highlights its robustness.

Finally the performance of proposed method is evaluated

using a standard industrial ASR test, namely the Microsoft

Cortana 1.0 score test. This is a benchmark originally designed

for evaluating ASR performance of pc/laptops in near-field

conditions and therefore is expected to show degradation with

a high reverberation 1. To highlight the effectiveness of the

proposed dereverberation algorithm and also to show the effect

of using the binary speech presence posterior, the proposed

method ”prop” is now compared with the noise reduction S-

IVA method alone ”denoise” [11] and the proposed method

when the DNN posteriors are not used to control the update

of the prediction filters ”prop-noVAD”. The absolute word ac-

curacy rate (WAR) in percentage is shown in Table 1 where the

average scores ”avg” over all the 6 different distances for each

SNR are also shown to facilitate the comparison. Comparing

the average scores for ”denoise” and ”prop” indicates that

1Newer versions of the test using far-field ASR models are available but
were not considered in this work as it was not compatible with the data
available at the time of writing this manuscript.

the proposed dereverberation method could improve the ASR

scores in both SNR conditions. Also, comparing the average

scores for ”prop” and ”prop-noVAD” shows that the binary

speech presence posterior for prediction filter estimation can

sensibly improve the performance especially in low SNR. This

is expected since in low SNR the prediction filter estimation

can be largely affected by loud background noise.

V. CONCLUSIONS

A new multichannel dereverberation algorithm based on

the Maximum Likelihood estimation is proposed, in order to

reduce the late the reverberation in noisy environments. The

problem is formulated for an on-line solution using a modified

adaptive RLS algorithm where the update of the filters is

controlled by speech activity posteriors, estimated through

a pretrained DNN. Unlike other counterparts, the proposed

algorithm is robust to low SNR conditions as the noise is

explicitly modeled in the cost function. Experimental results

shows that the proposed method can consistently improve

objective dereverberation benchmarks and drastically increase

ASR scores when compared with other existing state-of-art

methods for on-line dereverberation.

REFERENCES

[1] S. Mosayyebpour, H. Sheikhzadeh, T. A. Gulliver, and M. Esmaeili,
“Single-microphone LP residual skewness-based approach for inverse
filtering of room impulse response,”IEEE Trans. Audio, Speech, Lang.
Process., vol. 20, no. 5, pp. 1617–1632, July 2012.

[2] S. Mosayyebpour, M. Esmaeili, and A. Gulliver, “Single- Microphone
Early and Late Reverberation Suppression in Noisy Speech,”IEEE Trans.
Audio, Speech, Lang. Process., vol. 21, no. 2, pp. 322–335, Feb. 2013.

[3] T. Nakatani, T. Yoshioka, K. Kinoshita, M. Miyoshi, and B.-H. Juang,
“Speech dereverberation based on variance-normalized delayed linear
prediction,”IEEE Trans. Audio, Speech, Lang. Process., vol. 17, no. 7,
pp. 1717–1731, Sep. 2010.

[4] Takuya Yoshioka and Tomohiro Nakatani, “Generalization of multi-
channel linear prediction methods for blind MIMO impulse response
shortening,”IEEE Trans. Audio, Speech, Lang. Process., vol. 20, no. 10,
pp. 2707–2720, Dec. 2012.

[5] Takuya Yoshioka, Tomohiro Nakatani, and Masato Miyoshi, “Integrated
speech enhancement method using noise suppression and dereverber-
ation,”IEEE Trans. Audio, Speech, Lang. Process., vol. 17, no. 2, pp.
231–246, Feb. 2009.

[6] M. Togami, Y. Kawaguchi, R. Takeda, Y. Obuchi, and N. Nukaga,
“Optimized speech dereverberation from probabilistic perspective for
time varying acoustic transfer function,”IEEE Trans. Audio, Speech,
Lang. Process., vol. 21, no. 7, pp. 1369–1380, July 2013.

[7] A. Jukic, T. van Waterschoot, T. Gerkmann, and S. Doclo, “Multi-
channel linear prediction-based speech dereverberation with sparse pri-
ors,”IEEE Trans. Audio, Speech, Lang. Process., vol. 23, no. 9, pp. 1509–
1520, July 2015.

[8] T. Yoshioka, H. Tachibana, T. Nakatani, M. Miyoshi, “Adaptive dere-
verberation of speech signals with speaker-position change detec-
tion,” in Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 394–406, Apr. 2009.

[9] Takuya Yoshioka, Tomohiro Nakatani, “Dereverberation for
reverberation-robust microphone arrays,” in Proceedings of the
European Signal Processing Conference (EUSIPCO), Apr. 2013.

[10] B. Schwartz, S. Gannot, and E.A.P. Habets, “Online Speech Derever-
beration Using Kalman Filter and EM Algorithm,”IEEE Trans. Audio,
Speech, Lang. Process., vol. 23, no. 2, pp. 394–406, Feb. 2015.

[11] Francesco Nesta, Saeed Mosayyebpour, Zbynek Koldovsk, and Karel
Palecek, “Audio/video supervised independent vector analysis through
multimodal pilot dependent components,” in Proceedings of the Euro-
pean Signal Processing Conference (EUSIPCO), Apr. 2017.

[12] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for
speech enhancement,”IEEE Trans. Audio, Speech, Lang. Process., vol.
16, no. 1, pp. 229–238, Jan. 2008.

[13] Tiago H. Falk ; Chenxi Zheng ; Wai-Yip Chan, “A non-intrusive
quality and intelligibility measure of reverberant and dereverberated
speech,”IEEE Trans. Audio, Speech, Lang. Process., vol. 18, no. 7, pp.
1766–1774, Jan. 2010.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1570


