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Abstract—Spectral clustering is an empirically successful ap-
proach to separating a dataset into some groups with possibly
complex shapes based on pairwise affinity. Identifying the num-
ber of clusters automatically is still an open issue, although many
heuristics have been proposed. In this paper, imposing sparsity
on the eigenvectors of graph Laplacian is proposed to attain
reasonable approximations of the so-called cluster-indicator-
vectors, from which the clusters as well as the cluster number
are identified. The proposed algorithm enjoys low computational
complexity as it only computes a relevant subset of eigenvectors.
It also enjoys better clustering quality than the existing methods,
as shown by simulations using nine real datasets.

I. INTRODUCTION

Clustering is an unsupervised machine learning task of
great importance, aiming to group a given dataset based
on some affinity measure. The important problem involved
with clustering is how to determine the number of clusters.
Although several methods for the automatic determination
have been proposed (e.g., [1], [2], [3]), most (if not all)
of them suffer from high computational costs and/or low
accuracy. Spectral clustering [4], [5], [6] is one of the clus-
tering methods, which exploits the so-called graph-Laplacian
matrix. It is known to be able to identify clusters with non-
convex boundaries, while k-means [7], [8] tends to yield
spherical clusters. The eigenvectors of a graph Laplacian are
some linear combinations of the indicator vectors, where the
indices of the nonzero components indicate the clusters. If
the indicator vectors themselves are attained instead of their
linear combinations, the clusters and its number can readily
be obtained. Self-tuning spectral clustering (STSC) [1] tries
to decouple the linear combinations via certain optimization
problem. As mentioned therein, however, the cost function
used is motivated by simplicity and perfectible. It has indeed
been reported that STSC often gives low clustering accuracy
due to underestimation of the cluster number [3]

In this paper, we propose an efficient spectral clustering
algorithm which identifies the cluster number automatically.
The proposed algorithm seeks to obtain the indicator vectors
in a way different from STSC. Since the indicator vectors
of the clusters are sparsest among their linear combinations,
the eigenproblem is formulated with a sparse regularizer.
The proposed algorithm computes the sparse eigenvectors and
the corresponding clusters successively using an eigenvalue
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deflation method [9], until each data point is assigned to one
of the clusters. The number of sparse eigenvectors obtained
is thus no more than the cluster number, and this saves
the computational time. The simulation results show that the
proposed algorithm tends to attain better clustering quality
than the existing ones for real datasets in terms of normalized
mutual information (NMI) [10], [11].

Notation

Let Sn+ denote the set of n-dimensional symmetric positive
semi-definite matrices. Define 1, n := {1, 2, · · · , n}. Given
A ⊆ 1, n, define the indicator vector 1A ∈ Rn by

∀i ∈ 1, n : (1A)i :=

{
1 i ∈ A
0 i /∈ A.

(1)

Define 1 := 11,n. Given a ∈ Rn, let diag (a) denote the
diagonal matrix with entries given by a. Define the support
supp (a) :=

{
i ∈ 1, n|ai 6= 0

}
. Define the `0 pseudo-norm

‖a‖0 := |supp (a)|. The term i-th principal (minor) eigenvec-
tor refers to the eigenvector associated with the eigenvalue λi

where |λj | ≥ |λk| (|λj | ≤ |λk|) for all j < k.

II. PRELIMINARIES

We present the minimum knowledge required to understand
the proposed algorithm. See e.g. [6] for the comprehensive
tutorial on spectral clustering. Spectral clustering takes a
dataset {x1, · · · , xn} and the corresponding affinity matrix
W ∈ Rn×n

+ whose entry wi,j (= wj,i) represents the affinity
between xi and xj . Consider a partition {C1, · · · , Cc} of the
indices 1, n as clusters of the dataset. Let ∼ denote the
equivalence relation with respect to {C1, · · · , Cc}, i.e.

i ∼ j ⇐⇒
(
∃k ∈ 1, c s.t. i, j ∈ Ck

)
. (2)

Spectral clustering then seeks the clusters {C1, · · · , Cc} such
that:

• intra-cluster affinity (wi,j for i ∼ j) is large.
• inter-clusters affinity (wi,j for i � j) is small.

Spectral clustering exploits a matrix called graph Laplacian,
for which several definitions exist:

L := D −W (3)

Lsym := I −D−1/2WD−1/2 (4)

Lrw := I −D−1W , (5)
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Fig. 1. The conceptual diagram of the classical spectral clustering.
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Fig. 2. The conceptual diagram of the proposed algorithm.

where D := diag (W1). Since W is symmetric and non-
negative, the followings hold:

Proposition 1 (Properties of the graph Laplacians [6]). (a)
All eigenvalues of L, Lsym and Lrw are non-negative.

(b) Lsymv = λv ⇐⇒ Lrw

(
D−1/2v

)
= λ

(
D−1/2v

)
(c) Let G be a graph whose weighted adjacency matrix is W ,

and C̃i ⊆ 1, n
(
∀i ∈ 1,m

)
be the connected component

of G. Then L and Lrw share the same eigenspace
span

{
1C̃1

, · · · ,1C̃m

}
corresponding to the eigenvalue 0.

We now consider the ideal case where the desired clusters
{C1, · · · , Cc} have exactly zero inter-cluster affinity:

∀i, j ∈ 1, n : i � j =⇒ wi,j = 0. (6)

The clusters {C1, · · · , Cc} then coincide with the connected
components

{
C̃1, · · · , C̃m

}
in Proposition 1. Therefore the

minor eigenvectors {u1, · · · ,uc} of L give a basis of
span {1C1 , · · · ,1Cc}. Define U :=

[
u1 · · · uc

]
∈ Rn×c

and let yi ∈ Rc be the i-th column of U>. The following
property is useful to identify {C1, · · · , Cc}:

∀i, j ∈ 1, n : i ∼ j ⇐⇒ yi = yj . (7)

In more practical settings, the inter-cluster affinity is not
necessarily zero, but takes small values. If one decomposes L
into an intra-cluster (inter-cluster) term L̂ (E):

L = L̂+E, (8)

l̂i,j :=

{
li,j i ∼ j

0 i � j
, ei,j :=

{
0 i ∼ j

li,j (= −wi,j) i � j
, (9)

then the minor eigenvectors of L̂ form a basis of
span {1C1

, · · · ,1Cc
} as in the ideal case mentioned above.

Furthermore, since E has a small Frobenius norm, the eigen-
vectors of L are close to those of L̂ in a certain sense,
according to the matrix perturbation theory [12]. This implies
that (7) approximately holds, and the clusters {C1, · · · , Cc}
can be identified by clustering {y1, · · · ,yn} as illustrated in
Figure 1.

III. PROPOSED ALGORITHM

We present an efficient spectral clustering algorithm without
assuming given c. The key problem of the spectral clustering

is that {u1, · · · ,uc} can be an arbitrary orthonormal basis of
span {1C1

, · · · ,1Cc
}, and there is no guarantee that it coin-

cides with {1C1
, · · · ,1Cc

}. This complicates the subsequent
clustering process, and thus one cannot compute Ci sequen-
tially as i increases. We employ the sparse regularization to
solve this issue.

A. Main idea

The proposed algorithm uses the sparse regularization
to compute the minor eigenvectors {ǔ1, · · · , ǔc} of the
graph Laplacian L. The regularization leads to obtaining
the sparsest vectors, i.e. {1C1

, · · · ,1Cc
}, in the eigenspace

span {1C1
, · · · ,1Cc

}. Then each cluster Ci can be identified
independently by taking the support of ǔi, as depicted in
Figure 2. Only a relevant subset of eigenvectors needs to
be computed since the algorithm terminates once all the data
points are assigned to the clusters.

It is well known in basic linear algebra that for all A ∈ Sn,
a first principal eigenvector u (A) is given by

u (A) ∈ argmax
u∈Sn

u>Au, (10)

where Sn :=
{
u ∈ Rn : u>u = 1

}
is the unit sphere. We

define a first principal sparse eigenvector:

ǔ (A) ∈ argmax
u∈Sn

(
u>Au− ρ ‖u‖0

)
, (11)

where ρ > 0 is the sparsity-controlling parameter. Several
feasible algorithms have been proposed to approximate ǔ (A)
for A ∈ Sn+, mainly in the context of sparse principal
component analysis (SPCA) [13], [14], [15], [16].

A first minor sparse eigenvector ǔ1 of L, which is needed
for the proposed algorithm, is defined as ǔ1 := ǔ (−L) =
ǔ (Lrev), where Lrev := λmaxI − L ∈ Sn+ and λmax is
the largest eigenvalue of L. The subsequent minor sparse
eigenvectors {ǔ2, · · · , ǔc} can be obtained with one of the
eigenvalue deflation methods.

B. Implementation details

1) Choice of the graph Laplacian: The use of the un-
normalized Laplacian L tends to give poor results. Using
normalized Laplacian Lrw or Lsym is therefore suggested
in the proposed algorithm. Furthermore, Lrw is better since
Proposition 1 (c), which does not apply to Lsym, is the key
to our derivation. The sparse eigenvectors of Lrw however
cannot be computed directly due to its asymmetry. Hence the
proposed algorithm computes a minor sparse eigenvector vi

of Lsym, and then regard D−1/2vi as a sparse eigenvector of
Lrw.

2) Effects of the noise: In the practical settings where the
inter-cluster affinity is not exactly zero, {ǔ1, · · · , ǔc} are not
exactly {1C1 , · · · ,1Cc}. This causes the following two issues:
(a) supp (ǔi) is a bad estimate of Ci since ǔi is likely to

have very small entries such as 10−5.
(b) The resulting clusters may overlap.
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To deal with issue (a), we use the following function instead
of supp:

supp′r : x 7→
{
i ∈ 1, n : |xi| > r max

j∈1,n
|xj |
}
, (12)

where 0 < r < 1 is a parameter. As a remedy for issue (b),
Ci is estimated by

Ci := Ri−1 ∩ supp′r (ǔi) , (13)

whereRi := Ri−1\Ci
(
R0 := 1, n

)
is the set of indices which

are not yet assigned to any clusters at the i-th iteration.
3) Parameters: The sparsity-controlling parameter ρ > 0

needs to be tuned appropriately since the solution of (11)
approaches that of (10) as ρ → 0, while it becomes too
sparse as ρ is too large. The optimization problem (11) is
often relaxed using the `1-norm for tractability. Observe the
following equation:

max
u∈Sn

‖u‖1 =
√
n. (14)

This implies that the “magnitude” of the `1-term depends on
the number n of data points, and that ρ′ :=

√
nρ should be

less dependent on the data. In fact, the fixed ρ′ = 0.1 gives
reasonable performances in our experiments (excluding one
dataset; see Table I).

Another parameter is 0 < r < 1 for the threshold of supp′r.
The fixed r = 0.1 empirically gives good performances.

The proposed method is summarized in Algorithm 1.

Algorithm 1 Sparse Spectral Clustering (proposed)

1: Input: The affinity matrix W ∈ Rn×n
+

2: Parameter: ρ′ > 0
3: r ← 0.1 and ρ← ρ′/

√
n

4: D ← diag (W1)
5: Lsym ← I −D−1/2WD−1/2

6: λmax ← (the largest eigenvalue of Lsym)
7: A0 ← λmaxI −Lsym

8: i← 0 and R0 ← 1, n
9: repeat

10: vi ← argmax
v∈Sn

(
v>Aiv − ρ ‖v‖0

)
(approxi-

mately)
11: Ai+1 ← Ai −

(
v>
i Aivi

)
viv

>
i

12: ǔi ←D−1/2vi

13: Ci ←Ri−1 ∩ supp′r (ǔi)
14: Ri ←Ri−1 \ Ci
15: i← i+ 1
16: until Ci = ∅
17: Output: C1, · · · , Ci−1 and Ri

IV. SIMULATION RESULTS

Numerical experiments are conducted to validate the fol-
lowing claims:
(a) The minor sparse eigenvectors of the graph Laplacian

approximate the cluster-indicating vectors.
(b) The proposed algorithm gives visually natural clustering

results.

(c) The proposed algorithm outperforms the existing methods
in terms of clustering quality.

A. Synthetic datasets

1) Settings: Two datasets {x1, · · · ,xn} ⊂ R2 are used.
The first data model is a mixture of four well-separated
Gaussians, each of which has mean (±5, ±5) ∈ R2 and
covariance I . 150 points are i.i.d. sampled from each Gaussian,
resulting n = 600 points in total. The affinity matrix W is
then set to the Gaussian kernel matrix K:

ki,j := exp

(
−‖xi − xj‖2

2σ2

)
(15)

with σ = 1.
The second dataset1 consists of three concentric circles with

62, 99, 138 data points, respectively (n = 299). For this data,
W is designed as follows:

W := K �A, (16)

Where A is the adjacency matrix of the k-nearest neighbor
graph of the dataset, and � denotes the Hadamard product.
The parameters are set to σ = 1, k = 5.

To compute the sparse eigenvectors, iterative minimization
of rectangular procrustes (IMRP) [16] is used along with
Hotelling’s deflation. The parameters for the surrogate function
of IMRP is fixed to p = 1, ε = 10−3.

2) Results: Figure 3 shows the affinity matrix W for
each dataset, where the indices are sorted according to the
clusters. One can see that W of both cases are approximately
block-diagonal. This indicates that the inter-cluster affinity is
small. Figure 4 shows the sparse eigenvectors {ǔ1, · · · , ǔc}
generated by Algorithm 1 for the Gaussian mixture dataset.
The vectors {ǔ1, · · · , ǔc} approximate the cluster-indicating
vectors {1C1

, · · · ,1Cc
}, verifying the claim (a). Furthermore,

{ǔ1, · · · , ǔc} for the circles dataset were almost exactly equal
to {1C1

, · · · ,1Cc
} (the figure is omitted due to the lack of

space). Consequently the proposed algorithm identifies the
correct number of clusters for these datasets. To support the
claim (b), the identified clusters are depicted in Figure 5 with
different colors.
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Fig. 3. The affinity matrix W .

1Available at www.vision.caltech.edu/lihi/Demos/SelfTuningCluster-
ing.html
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Fig. 4. The sparse eigenvectors ǔ1, · · · , ǔ4 for the mixture of Gaussians
dataset.
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Fig. 5. The clustering results of the 2D data points.

B. Real datasets

1) Settings: The clustering quality of the proposed algo-
rithm was compared to the existing ones, using real datasets for
the classification. The datasets are exactly the same as in the
numerical experiments conducted in [3]. The affinity matrices
are again constructed via the k-nearest neighbor graph and
the Gaussian kernel (with parameter σ). Some of the datasets
are standardized beforehand so as to have zero mean and unit
variances. Table I shows the sample size n, dimension d of
data, the parameters σ, k for constructing W , and the sparsity-
inducing parameter ρ′ used in Algorithm 1.

TABLE I
ATTRIBUTES AND PARAMETERS FOR EACH DATASET

dataset n d σ k ρ′ standardized
Opt. Digits. 5620 64 100 5 0.10 No
Pen Digits 10992 16 50 5 0.10 No
M.F. Digits 2000 216 10 5 0.10 Yes

Satellite 6435 36 30 5 0.10 No
Yale Faces 5850 1200 1000 5 0.10 No
Phoneme 4509 256 50 5 0.10 No

Smartphone 10929 561 30 5 0.06 Yes
ISOLET 6238 617 30 5 0.10 Yes

Image Seg. 2310 19 50 50 0.10 Yes

The similarity between the true labels and the clustering

results are measured based on normalized mutual information
(NMI). NMI between two random variables X,Y is defined
as follows:

NMI (X,Y ) :=
I (X,Y )√

H (X)H (Y )
, (17)

where I (X,Y ) := H (X) −H (X|Y ) = H (Y ) −H (Y |X)
is the mutual information and H is the Shannon entropy:

H (X) := EX [− log2 p (X)] (18)
H (X|Y ) := EX,Y [− log2 p (X|Y )] . (19)

In our case X and Y correspond to the true label and
the estimated label for each data point. Given true clusters
{C?1 , · · · , C?c?} and estimates {C1, · · · , Cc}, the empirical joint
probabilities are defined as

∀x ∈ 1, c?, y ∈ 1, c : p (x, y) := |C?x ∩ Cy| /n. (20)

The following hold for all random variables X,Y :

• 0 ≤ NMI (X,Y ) ≤ 1;
• NMI (X,Y ) = 0 ⇐⇒ X,Y are independent;
• NMI (X,Y ) = 1 ⇐⇒ knowing X determines Y , and

vice versa.

A higher NMI thus implies that X,Y are more mutually-
dependent (i.e. the estimated clusters are more accurate).

2) Results: The true number c? of clusters, the estimated
number c, and NMI are summarized in Table II. Experimental
results for the following clustering algorithms are taken from
[3]: spectral partitioning using density separation (SPUD) [3],
self-tuning spectral clustering (STSC) [1], spectral clustering
using cluster distortion (SCCD)2 [5], alternative spectral clus-
tering (Alt. SC)3, k-means [8] with gap statistic [17] to esti-
mate c, optimal extraction of clusters from hierarchies (OCE)
[18], Gaussian mixture model (GMM) [19] with Bayesian
information criterion to estimate c, DBSCAN [20]. A brief
summary of all these algorithms can be found in [3]. Note that
the affinity matrix W for the proposed algorithm is sparsified
for computational efficiency by using the kernel matrix K and
the k-nearest neighbor graph, whereas it was set to the kernel
matrix K itself in [3].

Table II shows that the proposed algorithm outperforms all
the other algorithms on average. In addition, it often achieves
the highest or nearly highest NMI for each dataset.

The datasets with NMI less than 0.7 are further investigated.
Figures 6–9 illustrate the matrix W for these datasets. The
indices of W in each subfigure is sorted according to the true
clusters or the clusters estimated by the proposed algorithm,
respectively. Figures 6(b)–9(b) are nearly block-diagonal, in-
dicating that the inter-cluster affinity for the estimated clusters
are small. This suggests that the proposed algorithm gives
reasonable results for the given W .

2SCCD cannot identify the cluster number.
3P. Bruneau, “speccalt: Alternative spectral clustering, with automatic

estimation of k.” 2013.
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V. CONCLUSION

We proposed an efficient spectral clustering algorithm that
identifies the cluster number automatically. The proposed
algorithm was derived by formulating the clustering task as
a sparse eigenvalue problem for the graph Laplacian matrix.
It computes the sparse minor eigenvector recursively until each
data point is assigned to one of the clusters, thus being com-
putationally efficient. The simulation results demonstrated that
the proposed algorithm attained significantly higher average-
NMI than the existing methods over the real benchmark
datasets.

TABLE II
CLUSTERING QUALITY BASED ON NMI FOR BENCHMARK DATASETS. THE
RESULTS OF OTHER ALGORITHMS WERE TAKEN FROM [3]. THE HIGHEST

NMI FOR EACH DATASET IS HIGHLIGHTED IN BOLD.

dataset \ algorithm proposed SPUDS STSC SCCD Alt.SC k-means OCE GMM DBSCAN
Yale Faces NMI 0.92 0.84 0.04 0.73 0.28 0.70 0.81 0.78 0.54
(c? = 10) c 16 14 2 - 7 20 10 9 47
Opt. Digits NMI 0.86 0.79 0.73 0.01 0.01 0.68 0.59 0.63 0.56
(c? = 10) c 11 13 9 - 3 19 4 9 8
Phoneme NMI 0.86 0.69 0.66 0.87 0.63 0.68 0.68 0.61 0.37
(c? = 5) c 5 7 3 - 3 10 3 4 3

M.F. Digits NMI 0.83 0.79 0.71 0.80 0.73 0.72 0.57 0.00 0.65
(c? = 10) c 16 18 2 - 19 20 5 9 27
Pen Digits NMI 0.77 0.70 0.38 0.19 0.80 0.73 0.64 0.73 0.69
(c? = 10) c 12 9 2 - 19 20 5 9 27
ISOLET NMI 0.66 0.72 0.64 0.70 0.26 0.70 0.42 0.40 0.25
(c? = 26) c 10 25 15 - 2 52 2 2 5

Smartphone NMI 0.65 0.55 0.57 0.51 0.49 0.56 0.57 0.00 0.41
(c? = 12) c 19 7 2 - 2 24 2 1 3
Image Seg. NMI 0.61 0.68 0.42 0.03 0.01 0.61 0.46 0.62 0.50
(c? = 7) c 9 6 3 - 3 14 2 8 5
Satellite NMI 0.60 0.40 0.39 0.62 0.66 0.60 0.38 0.55 0.51

(c? = 10) c 27 3 2 - 7 11 3 9 5
Average NMI 0.75 0.68 0.50 0.50 0.43 0.66 0.57 0.48 0.50
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Fig. 6. The affinity matrices W for Satellite dataset (c? = 10).
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Fig. 7. The affinity matrices W for Smartphone dataset (c? = 12).
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