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Abstract—This paper presents a new algebraic solution for
source localization using time difference of arrival (TDOA)
measurements in the large equal radius (LER) scenario when
the known sensor positions have random errors. The proposed
method utilizes the LER condition to directly approximate the
true TDOAs so that the originally nonlinear TDOA equations can
be recast into ones linearly related to the source position. This
enables the use of the closed-form weighted least squares (WLS)
technique for source localization and makes the proposed method
have lower complexity than the existing technique. The approx-
imate efficiency of the new algorithm is established analytically
under strong LER condition. The associated approximation bias
is also derived and it is shown numerically to be greater than
that of the benchmark technique, especially when LER condition
is weak. However, through iterating the proposed method once
with bias correction, the proposed method yields comparable
localization accuracy with reduced complexity. The theoretical
developments are validated by computer simulations.

I. INTRODUCTION

Source localization refers to determining the position of
an unknown source. It is an active research area with wide
applications in navigation, wireless communications, mobile
positioning, and search and rescue [1], [2]. To locate the
source, positioning parameters including the angle of arrival
(AOA) [3], time difference of arrival (TDOA) [4] and fre-
quency difference of arrival (FDOA) [5] are typically utilized.

We shall consider in this work using TDOA measure-
ments for source localization. The inherent nonlinearity of
TDOAs with respect to the unknown source position often
makes it non-trivial to obtain the optimal solution. Many
research efforts have been devoted to addressing this diffi-
culty. Among the available TDOA positioning techniques, a
straightforward approach is to perform exhaustive grid search.
But the associated computational cost is prohibitive for real-
time applications. Besides the iterative methods such as the
Taylor-series (TS) based methods [6], [7], there also exist
algebraic closed-form solutions such as the well known two-
stage weighted least squares (TS-WLS) algorithm [8]. The TS-
WLS technique is computationally attractive as it does not
require initial solution guesses. More importantly, it provides
the Cramér-Rao lower bound (CRLB) accuracy under small
noise condition.

In some localization applications, the sensors may be de-
ployed in a way that they have almost identical ranges from the

source to be localized. Such a localization situation is called
the large equal radius (LER) scenario [9], where all the TDOA
measurements would approach zeros. A typical LER scenario
occurs in the geolocation of an object on Earth using a number
of satellites. Another example is positioning an object near the
center of a sensor network using sensors at the boundary.

The TS-WLS method is known to be unable to produce a
correct localization solution in the LER scenario as the matrix
to be inverted in the WLS solution can be ill-conditioned,
leading to a poor estimate [10]. To address this deficiency,
alternative methods such as the dual-root minimum vari-
ance least squares (DMVLS) [11] and separated constrained
weighted least squares (SCWLS) [10] algorithms have been
proposed. To ensure good performance, however, they either
require a proper initial solution guess or need complicated root
selection strategies. Recently, [1] developed a geometric inter-
pretation based method for TDOA source localization in the
LER scenario. It leads to a closed-form solution, eliminating
the requirement for good initialization and cumbersome root-
finding process. However, its computation cost can be large for
real-time applications especially when the number of sensors
increases. This motivates the development of a new method.

This paper proposes a new closed-form solution for TDOA
positioning in the LER scenario when the known sensor
positions have random errors. It is derived by approximating
the true TDOAs directly via exploiting the LER condition. The
resulting TDOA equations are linearly dependent on the un-
known source position and have a closed-form WLS solution.
It is shown analytically that the new method is able to achieve
the CRLB accuracy under small observation noise and strong
LER condition, as the benchmark technique from [1]. The
localization bias from the approximation is also derived and
shown numerically to be larger than that of the method in [1].
But complexity analysis demonstrates that the new method is
conceptually simpler and computationally cheaper. Simulation
results verify that with iterating the algorithm once and bias
correction, the new method yields comparable localization
performance close to the CRLB as the one developed in [1]
with reduced computational complexity.

The remainder of this paper is organized as follows. Section
II describes the considered TDOA source localization scenario.
Section III presents the new localization solution with its
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performance and complexity analysis. Section IV gives the
simulation results and conclusions are drawn in Section V.

II. LOCALIZATION SCENARIO

We shall consider the 3D localization scenario depicted in
Fig. 1. The objective is to locate an unknown source at uo =
[uox, u

o
y, u

o
z]T using M sensors, whose true positions are soi =

[sox,i, s
o
y,i, s

o
z,i]

T , i = 1, 2, . . . ,M . Under the LER condition
[9], the sensors are equidistant or almost equidistant from the
origin p. Besides, the source-origin distance ro = ||uo|| is
much smaller than the sensor-origin distances Ro

i = ||soi ||,
where ‖ ∗ ‖ is the Euclidean norm. Mathematically, we have

Ro
i

Ro
j

' 1, ∀i 6= j and
ro

Ro
i

' 0, ∀i. (1)

When the LER condition is strong, (1) would essentially
become equalities.

Fig. 1. 3D source localization in the LER scenario with noisy sensor positions.

The true TDOA between the sensor pair i and 1, after being
multiplied with the signal propagation speed, is

roi1 = roi − ro1 = ‖uo − soi ‖ − ‖uo − so1‖. (2)

The measured TDOAs can thus be collectively denoted as

r = [r21, r31, ..., rM1]T = ro + nr (3)

with ro = [ro21, r
o
31, . . . , r

o
M1]T . The measurement noise vector

is nr = [nr,21, nr,31, ..., nr,M1]T such that ri1 = roi1 + nr,i1.
nr is assumed to follow the multivariate Gaussian distribution
with zero mean and covariance matrix Qr.

It is clear from (2) that in the considered LER localization
scenario, the true TDOAs will become close to zero. This
renders many existing TDOA-positioning techniques such as
those developed in [8] and [12] inapplicable, especially under
strong LER condition. The underlying reason is that near zero-
valued TDOAs can make some matrices to be inverted in these
algorithms ill-conditioned and cause meaningless results.

The true positions of the sensors soi are not available and
the known sensor positions have errors ns,i such that

s = [sT1 , s
T
2 , ..., s

T
M ]T = so + ns (4)

where so = [soT1 , soT2 , . . . , soTM ]T . The sensor position error
vector ns = [nT

s,1,n
T
s,2, ...,n

T
s,M ]T is Gaussian distributed

with zero-mean and covariance matrix Qs. We further assume
that ns and nr are independent of each other.

III. ALGORITHM AND ANALYSIS

We shall present a new closed-form solution to the LER
localization problem formulated in the previous section. As
the existing method developed in [1], the new algorithm
does not require an initial solution guess or intermediate
variables, and it is shown analytically to be able to attain the
CRLB accuracy under small Gaussian noise and strong LER
condition. More importantly, the new method is conceptually
and computationally simpler than the method in [1] and other
root-finding based techniques such as those in [10], [11].

A. New Closed-Form Solution and Estimation Bias

1) Closed-Form Solution: Note from Fig. 1 that the sensor-
origin distance Ro

i can be related to the source-sensor distance
roi and unknown source position uo via

Ro
i = roi cosβo

i + ρoTi uo (5)

where ρoi = soi /R
o
i is a unit vector from the origin p to the

true position of sensor i, soi . From the LER condition (1),
we have that βo

i would approach zero if the source becomes
close to the origin p, which renders cosβo

i ≈ 1. Using this
approximation in (5) yields [1]

roi ≈ Ro
i − ρoTi uo. (6)

Substituting (6) into (2), we arrive at

roi1 = roi − ro1 ≈ Ro
i −Ro

1 − (ρoi − ρo1)Tuo. (7)

In other words, under the LER condition, the true TDOA is
now approximately linear with respect to the unknown source
position uo. This distinguishes the new solution from the
existing one in [1] (see more discussions in Section III.C).

To estimate uo as accurately as possible when the TDOA
measurements and sensor positions are both subject to errors,
we express the true values in (7) in terms of their noisy
quantities and apply the following first-order approximations

Ro
i ≈ Ri − ρTi ns,i (8)

ρoi ≈ ρi −
1

Ri
P⊥i ns,i , P⊥i = I− ρiρTi . (9)

Ri and ρi have the same functional form as Ro
i and ρoi except

that the true sensor position soi is replaced with its known but
imprecise version si.

Putting (8) and (9) into (7), we obtain the solution equation
for the considered LER localization problem, which is

εi1 ≈ ri1 − (Ri −R1) + (ρi − ρ1)Tuo. (10)

The equation error εi1 is

εi1 = nr,i1 + gT
i ns,i − gT

1 ns,1 , gi =
1

Ri
P⊥i uo − ρi. (11)

Stacking (10) yields the solution equation in matrix form

ε = h−Guo (12)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 367



h =

 r21 − (R2 −R1)
...

rM1 − (RM −R1)

 ,G = −

 ρT2 − ρT1
...

ρTM − ρT1

 .
(13)

The equation error vector ε is equal to

ε = nr + Dns (14)

where D is a (M − 1) × 3M matrix and its (i − 1)th row,
i = 2, 3, ...,M , is defined as

D(i− 1, :) = [−gT
1 ,0

T
3(i−2)×1,g

T
i ,0

T
3(M−i)×1]. (15)

The WLS solution to (12), also the newly proposed localiza-
tion solution for the LER scenario, is

u = (GTWG)−1GTWh (16)

where the weighting matrix W is

W = E(εεT )−1 = (Qr + DQsD
T )−1. (17)

It is important to point out that evaluating (16) requires any
three sensors are not colinear in order to make the matrix G
having full column rank. This can be satisfied in the LER
localization scenario by ensuring that no two sensors are very
near to each other.

To obtain the weighting matrix W that depends on the
unknown source position (see (15) and (11) for the definition
of D), we first find an initial source position estimate with
W = Q−1r and using the result to produce a better approxi-
mation of W for obtaining improved estimate u.

2) Localization Bias: The localization error in u can be
found by subtracting both sides of (16) the true source position
uo. We have

4u = u− uo = (GTWG)−1GTWb (18)

where
b = [b21, b31, ..., bM1]T = h−Guo. (19)

Even in the absence of TDOA noise and sensor position errors,
b would still be non-zero due to the use of the approximation
(6). In such a noiseless case, from (13) and using (2) and (5),
the (i− 1)th element of b can be shown to be equal to

bi1 = roi1 − (Ro
i −Ro

1) + (ρoi − ρo1)Tuo

= roi (1− cosβo
i )− ro1(1− cosβo

1).
(20)

Putting (20) into (19) and substituting the result back into (18)
yield the localization error in the noise-free scenario, which
is indeed the estimation bias in the new localization solution
(16). It is clear from (20) that the localization bias would
be prominent as the LER condition becomes weak and βo

i

increases. On the contrary, under strong LER condition, βo
i ,

βo
1 and hence bi1 in (20) would approach zero, which leads to

an almost unbiased localization solution.
To reduce the estimation bias in u from (16), a straightfor-

ward approach is to subtract an estimate of the localization
bias from u for producing the reduced-bias solution

ũ = u−4ũ. (21)

4ũ is obtained via replacing uo with u and evaluating (18).
To further improve performance under weak LER condition,

we can adopt the technique in [1] to iterate the proposed
localization method once as follows. In particular, we can
set the coordinate origin p to ũ and repeat the process that
produces ũ. The newly obtained localization result is then
added to ũ to generate the final localization output.

B. Performance Analysis

The CRLB of the true source position uo is [13]

CRLB(uo) = (UTQ−1r U−UTQ−1r VZ−1VTQ−1r U)−1.
(22)

Putting the definition of Z, Z = VTQ−1r V + Q−1s , and
applying the matrix inversion Lemma [14], we have

CRLB(uo) = (UT (Qr + VQsV
T )−1U)−1. (23)

U = ∂ro/∂uo and V = ∂ro/∂so are the partial derivatives.
They both have (M − 1) rows and their (i− 1)th rows are

U(i− 1, :) =
∂roi1
∂uoT

= ρ̄oTi − ρ̄oT1 (24)

V(i− 1, :) =
∂roi1
∂soT

= [ρ̄oT1 ,0T
3(i−2)×1,−ρ̄

oT
i ,0T

3(M−i)×1]

(25)
where i = 2, 3, ...,M and ρ̄oi = (uo − soi )/roi .

Under strong LER condition, the proposed localization
solution u is approximately unbiased (see the discussion under
(20)). Moreover, when the noise is small, the covariance
matrix of u can be found by multiplying ∆u in (18) with its
transpose, using ε given by (14) for b and taking expectation.
We have, after putting the definition of the weighting matrix
W in (17),

cov(u) ≈ (GT (Qr + DQsD
T )−1G)−1. (26)

Comparing (26) with (23) reveals that they would be ap-
proximately equal to each other, if

U ≈ G, V ≈ −D. (27)

From (11), (13), (15), (24) and (25), we can establish (27).
First, we have the approximation ‖ 1

Ro
i
Po⊥

i uo‖ ≤ ro

Ro
i
≈ 0,

which is valid under strong LER condition. Second, by ex-
panding ρ̄oi with respect to the source position around the
origin as

ρ̄oi ≈ −ρoi +
∂ρ̄oi
∂uo

∣∣∣∣
uo=0

uo

= −ρoi +
1

Ro
i

Po⊥
i uo ≈ −ρoi ≈ −ρi

(28)

where Po⊥
i = I−ρoiρoTi . The last approximation comes from

the small sensor position error assumption. Therefore, we can
arrive at, under small noise and strong LER condition,

cov(u) ≈ CRLB(uo). (29)

The newly proposed localization solution is approximately
efficient.
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TABLE I
TRUE SOURCE AND SENSOR POSITIONS IN SPHERICAL COORDINATES

Source Sensor
Azimuth (o) 114 116 79 169 11 -63 -142 40
Elevation (o) -15 76 -39 47 46 -22 12 -77
Range (m) ro Ro = 100

C. Complexity Analysis

A closed-form WLS solution to the considered LER local-
ization problem described in Section II was developed in [1],
which is based on the TDOA model equation

roi1 ≈ Ro
i −Ro

1 −
[

2(soi − so1)T

Ro
i +Ro

1

− roi1(ρoi − ρo1)T

Ro
i +Ro

1

]
uo. (30)

It is straightforward to verify that the proposed WLS
localization solution and the one developed from (30) in
[1] would be equivalent to each other under strong LER
condition. But the TDOA equation adopted in this work (see
(7)) is simpler. In particular, the derivation of the solution
equation (10) in this work does not require ignoring second-
order and higher order error terms. On the contrary, the
establishment of the solution equation from (30) does need to
neglect them due to the presence of the product roi1(ρoi − ρo1)
and the division 1

Ro
i+Ro

1
. Another advantage of adopting the

approximate TDOA equation (7) is the reduced computational
complexity. Compared with the method in [1], it is no longer
necessary to compute the division 1

Ro
i+Ro

1
when evaluating

the WLS localization solution using (16). Besides, finding
the estimate of the localization bias with (18) is simpler, as
the regression matrix G has a less complicated form. These
lead to a reduction of the number of divisions by M − 1
and the number of multiplications by 11(M − 1). Simulation
results presented in the following Section verify that the new
algorithm takes significantly smaller amount of running time
than the method in [1].

IV. SIMULATION RESULTS

We shall locate a source using M = 7 sensors, which are
distributed on a sphere centered at the origin with a radius
Ro = 100m. The spherical coordinates of the true source and
sensor positions are listed in Table I. The radial distance of the
source, ro, will be varied to generate different LER conditions.

In each experiment, L = 2000 ensemble runs are performed.
Noisy TDOA measurements are generated by adding to the
true values independent zero-mean Gaussian noise with co-
variance matrix Qr = 1

2σ
2
r(I6×6 + 16×11

T
6×1) [8], where σ2

r

is the TDOA noise variance. The erroneous sensor positions
are produced in a similar way but with covariance matrix
Qs = σ2

sdiag([1,2,10,4,25,30,40])⊗I3×3. Here, ⊗ denotes the
Kronecker product and σ2

s is the variance of the sensor position
errors. We shall investigate via simulations the performance of
the proposed solution in terms of the localization mean square
error (MSE) under different LER conditions, and various
TDOA and sensor position noise variances.

In the first simulation experiment, we fix the TDOA noise
power at σ2

r = 10−7m2 and sensor position error variance at

σ2
s = 0m2 (i.e, the sensor positions are known accurately).

This setup facilitates the investigation of the localization bias
of the proposed solution, as it is nearly a noise-free scenario.
We plot in Fig. 2 the localization MSEs of the proposed
solution in (16) and its reduced-bias version given in (21)
as a function of the range ratio Ro/ro. Clearly, the larger
the range ratio is, the stronger the LER condition would be.
For comparison, the associated source position CRLB and the
localization performance of the solution in [1] are also shown.

0 20 40 60 80 100

Range ratio

10
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Method in [1], without Bias Reduction

Method in [1], with Bias Reduction

Method in [1], with Bias Reduction (one iteration)

CRLB

Proposed, without Bias Reduction

Proposed, with Bias Reduction

Proposed, with Bias Reduction (one iteration)

Fig. 2. Localization MSEs of the proposed method and the solution from [1]
as a function of the range ratio Ro/ro.

Fig. 2 shows that the localization MSE of the proposed solu-
tion in (16) gradually approaches the CRLB, as the range ratio
Ro/ro increases. In fact, it can reach the CRLB when Ro/ro

is larger than 300. This is consistent with the performance
analysis result in Section III.B that the proposed solution is
approximately efficient under strong LER condition. The bias
reduction solution using (21) can significantly improve the
localization performance, where its MSE is close to the CRLB
when the range ratio is as small as 40 in this simulation.

Compared with the method from [1], however, the proposed
localization solution requires larger range ratio to reach the
CRLB performance, apparently due to having higher estima-
tion bias. This comes from that the TDOA modeling error due
to the use of the approximation (7) is higher than that obtained
via using (30) (results not shown because of page limit).

We next repeat the experiment for Fig. 2 but this time,
both the proposed solution and the method from [1] are
repeated once after origin update, as suggested at the end of
Section III.B. With just one iteration, the proposed and original
methods have comparable performance and attain the CRLB
accuracy even under very weak LER conditions. This is due
to the improvement in the LER condition during iterations.

As pointed out in Section III.C, the proposed solution
achieves such performance with less computation burden.
To quantify the amount of computational saving, we run
the MATLAB codes for the proposed method and the one
developed in [1], both with bias reduction and one iteration,
on a desktop with an Intel i5-8250U CPU clocked at 1.60GHz
and 8GB RAM. The number of sensors used for localization
is varied from 4 to 10 for a systematic evaluation. The
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TABLE II
COMPARISON OF EXECUTION TIMES IN SECONDS FOR L = 50000 RUNS

AS THE NUMBER OF SENSORS VARIES

M 4 5 6 7 8 9 10
Proposed 5.85 5.58 5.68 5.91 6.10 6.16 6.35

Method in [1] 7.52 7.73 7.71 7.96 8.16 8.36 8.40
Percentage (%) 22.2 27.8 26.3 25.7 25.2 26.3 24.4

execution times for 50,000 runs are listed in Table II, where
in each ensemble run, the azimuth and elevation angles of the
sensors are randomly generated. The proposed method requires
22.2%∼27.8% less running time than the solution from [1].
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Fig. 3. Localization MSE of the proposed solution as a function of the sensor
position error variance σ2

s with σ2
r = 10−4m2.

We next fix σ2
r = 10−4m2 and study the impact of the

sensor position error on the localization accuracy of the
proposed method. The simulation is only considered for the
weak LER scenario with a small range ratio R/ro = 5, as the
proposed solution is confirmed in Fig. 2 to be efficient only
under strong LER condition. In Fig. 3, the simulation MSE
of the proposed solution is plotted against the CRLB when
varying the sensor position noise power σ2

s . Bias reduction
provides some improvement of the performance in weak LER
conditions. However, again by performing one iteration, the
LER condition improves and the proposed solution achieves
the CRLB accuracy. We then set σ2

s = 10−5m2 and vary the
TDOA measurement noise power, while keeping Ro/ro = 5.
The proposed method with bias reduction and one iteration
also attains the CRLB accuracy, as shown in Fig. 4.

V. CONCLUSIONS

In this paper, a new closed-form solution with bias reduction
for TDOA based LER localization was developed. Its perfor-
mance was shown analytically and verified by simulations to
be able to achieve the CRLB in the strong LER scenario.
Though the method in [1] can reach the CRLB performance
under weaker LER condition, the proposed estimator is less
complex and computationally more efficient. Simulation re-
sults have shown that by applying bias reduction and repeating
the processing once, they can both attain the CRLB accuracy
under typical LER condition even if it is quite weak.
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Fig. 4. Localization MSE of the proposed solution as a function of the TDOA
measurement noise power σ2

r with σ2
s = 10−5m2.
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