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45067 Orléans, France

karim.abed-meraim@univ-orleans.fr

Abstract—In the present paper, a new joint eigenvalue decom-
position (JEVD) method is developed by considering generalized
Givens rotations. This method deals with a set of square matrices
sharing a same eigenstructure. Several Jacobi-like methods exist
already for solving the aforementioned problem. The differences
reside in the way of estimating the Shear rotation. Herein, we
clarify these differences, highlight the weaknesses of the existing
solutions and develop a new robust method named Efficient
and Stable Joint eigenvalue Decomposition (ESJD). Simulation
results are provided to highlight the effectiveness of the proposed
technique especially in difficult scenario.

Index Terms—Joint EigenValue Decomposition (JEVD), Ef-
ficient and Stable Joint eigenvalue Decomposition algorithm
(ESJD), generalized Givens rotations, exact JEVD, approximative
JEVD.

I. INTRODUCTION

The Joint EigneValue Decomposition (JEVD) is one of the

most challenging problems in multivariate signal processing

and finds many applications in different areas like direction

finding and MIMO radar [1]–[3], tensors’ canonical polyadic

decomposition [4]–[6], multidimensional harmonic retrieval

[5], biological signal processing [7] and blind sources sep-

aration [8]–[10].

This problem is well solved in the literature by considering

Jacobi-like techniques [8], [11] based on generalized Givens

rotations. According to our best knowledge, a first solution

was developed by Tuo Fu et al. in [11] producing the SHRT

algorithm. A second one has been proposed by Iferroudjene

et al. in [12] referred to as JUST algorithm. Finally, a

third method was introduced by Luciani et al. in [13] who

developed the JDTM algorithm. In this paper, we summarize

these aforementioned approaches in order to reformulate the

JEVD problem and propose a new algorithm able to deal with

difficult JEVD cases.

Next, section II is dedicated to the problem formulation and

the different JEVD criteria including the proposed one. In

section III, an efficient and numerically stable JEVD algo-

rithm is developed. In section IV, the developed algorithm is

compared with the existing ones by considering both exact

and approximate JEVD cases.

II. PROBLEM DEFINITION AND FORMULATION

Consider K square matrices of dimension N sharing the

following joint structure (exact JEVD case):

Mk = ADkA−1 (1)

Where k ∈ {1, ...,K}, A is a square full-rank matrix (referred

to as mixing matrix in the source separation context) and Dk

is the kth diagonal matrix associated to the kth matrix Mk.

The JVED problem consists of obtaining {A,D1, · · · ,DK}
from the set of the K real matrices1 {M1, · · · ,MK}. Another

way to define the considered problem consists in obtain-

ing a diagonalizing matrix V to make the set of matrices

{VM1V−1, · · · ,VMKV−1} diagonal or as diagonal as pos-

sible in the approximate JEVD case2.

In this paper, we are interested in the use of the generalized

Givens rotations to solve the JEVD problem. Then matrix

A can be decomposed in a product of generalized Givens

rotations, according to:

A =
∏

#sweeps

∏
1≤i<j≤N

Hij(θ, y) (2)

where #sweeps represents the sweeps number (number of

iterations) and Hij(θ, y) is the elementary generalized rotation

matrix given by

Hij(θ, y) = Sij(y)Gij(θ) (3)

Gij(θ) and Sij(y) being the elementary Givens and Shear

rotations. These rotations are equal to the identity matrix

except for (i, i)th, (i, j)th, (j, i)th , and (j, j)th elements

which are:[
Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
(4)

[
Sij(i, i) Sij(i, j)
Sij(j, i) Sij(j, j)

]
=

[
cosh(y) sinh(y)
sinh(y) cosh(y)

]
(5)

1The case of complex matrices relies on more elaborate derivations and
hence, due to space limitation, it will be presented in a longer version of this
paper.

2Often, in practice, matrices Mk represent some multivariate statistics
which are estimated from the data. Hence, due to finite sample size effect,
the structure in (1) is only approximately satisfied, leading to an approximate
JEVD problem.
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θ and y are Givens and Shear parameters, respectively. For

the estimation of the Givens rotation, the optimal solution

w.r.t. the criterion detailed in section II-A is given in [8], [11],

[12], [14]. Hence in this paper, we consider only the optimal

estimation of the Shear parameter.

For that, let’s consider M′
k a kth matrix affected by a Shear

transformation Sij(y).

Sij(y)MkSij(−y) = M′
k k ∈ {1, · · · ,K} (6)

Entries of M′
k can be expressed as follows:

M ′
k(i, j) =

1
2 [Mk(i, j) +Mk(j, i)]
+ 1

2 [Mk(i, j)−Mk(j, i)] cosh(2y)
+ 1

2 [Mk(j, j)−Mk(i, i)] sinh(2y)
(7)

M ′
k(j, i) =

1
2 [Mk(i, j) +Mk(j, i)]
− 1

2 [Mk(i, j)−Mk(j, i)] cosh(2y)
− 1

2 [Mk(j, j)−Mk(i, i)] sinh(2y)
(8)

M ′
k(l, i) = Mk(l, i) cosh(y) +Mk(l, j) sinh(y)

M ′
k(l, j) = Mk(l, i) sinh(y) +Mk(l, j) cosh(y)

M ′
k(i, l) = Mk(i, l) cosh(y)−Mk(j, l) sinh(y)

M ′
k(j, l) = −Mk(i, l) sinh(y) +Mk(j, l) cosh(y)

(9)

Where indices (i, j, l) are chosen as follows 1 ≤ i < j ≤ N ,

1 ≤ l ≤ N and l /∈ {i, j}.

Next, these transformed entries will be used within appro-

priate JEVD criteria to derive the optimal Shear parameter y.

A. Existing JEVD criteria

To deal with the JEVD problem, several criteria are pro-

posed in the literature. These criteria can be summarized as

follow

• In [11], the Shear rotation is chosen in such a way it min-

imizes the departure from normality (symmetry) through

the minimization of the Frobinus norm of considered

matrices Mk, k = 1, · · · ,K. Then, some approximations

are introduced to simplify this criterion and obtain an

explicit expression of the optimal value of ”y”.

• In [12], the considered criterion consists of the Frobinus

norm of off diagonal matrices, i.e. the Frobinus norm of

matrices Mk − diag(Mk), k = 1, · · · ,K. Surprisingly,

the obtained results are the ones given in equations (17)

and (13). An exact solution is provided for the Shear

parameter ’y’.

• In [13], the considered criterion is the sum of square

norm of the (i, j)th and (j, i)th entries of matrices Mk,

k = 1, · · · ,K. This criterion is a simplified version of

the one given in [12]. However, JDTM outperforms JUST

in many scenarios (see [13] for details).

B. Proposed JEVD Criterion

When matrix A is orthogonal (for which Mk are symmetric

matrices), Givens rotations are enough to achieve the JEVD.

However, when A is non-orthogonal, Shear rotations are

needed and used to reduce the deviation of matrices Mk from

symmetry (see [12] for details).

In our work, the Shear rotation is explicitly introduced to min-

imize the departure from symmetry of matrices Mk. Hence,

for each elementary rotation Sij(y), the minimized criterion

can be expressed as:

CT,ij(y) =
∑K

k=1

∑
1≤p<q≤N |M ′

k(p, q)−M ′
k(q, p)|2

= Cs,ij(y) + Cc,ij(y)
(10)

The considered criterion is formed of two terms. The first

term, computed by using only the (i, j)th and (j, i)th entries

which are affected twice by the Shear rotation, is the simplified

criterion denoted Cs,ij(y) and the second term Cc,ij(y) is the

complementary one.

Cs,ij(y) can be written as

Cs,ij(y) =

K∑
k=1

|M ′
k(i, j)−M ′

k(j, i)|2 (11)

The rest of entries are introduced in Cc,ij(y). This criterion

is computed using all ith and jth rows and columns except

(i, i)th, (i, j)th, (j, i)th and (j, j)th entries.

Cc,ij(y) =
K∑

k=1

N∑
l=1,l/∈{i,j}

|M ′
k(i, l)−M ′

k(l, i)|2 (12)

+ |M ′
k(j, l)−M ′

k(l, j)|2

We have introduced the expressions given in equations (7)

and (8) in the simplified criterion Cs,ij given in (11). After

some workouts, the obtained result is expressed as

Cs,ij(y) = vT Qv (13)

where

v = [cosh(2y) sinh(2y)]
T

(14)

and Q = CT C and the matrix C is expressed by

C =

⎡
⎢⎣

M1(i, j)−M1(j, i) M1(j, j)−M1(i, i)
...

...

MK(i, j)−MK(j, i) MK(j, j)−MK(i, i)

⎤
⎥⎦
(15)

Remark: Note that the criterion C1(y) given in [13] co-

incides with Cs,ij . Indeed the former criterion is expressed

by

C1(y) =
∑K

k=1 M
′
k(i, j)

2 +M ′
k(j, i)

2

= 1
2

∑K
k=1 (M

′
k(i, j) +M ′

k(j, i))
2

+
1
2

∑K
k=1 (M

′
k(i, j)−M ′

k(j, i))
2

(16)

It contains two terms, the first one is the square of summing

(i, j)th and (j, i)th entries. As given in (7) and (8), the sum of

these entries is independent from the Shear rotation parameter.

Then, minimizing C1(y) is equivalent to minimizing Cs,ij(y)
which is another way to show that Shear rotations minimize

the departure of matrix A from orthogonality (or equivalently,

the departure of matrices Mk from symmetry).
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The complementary criterion Cc,ij(y), given in (13), can

also be simplified by using the expressions of equation (9)

which leads to

Cc,ij = vT g − α (17)

where

g =
∑K

k=1

∑N
l=1,l/∈{i,j}[

Mk(l, i)
2 +Mk(i, l)

2 +Mk(j, l)
2 +Mk(l, j)

2

2 (Mk(l, i)Mk(l, j)−Mk(i, l)Mk(j, l))

]
(18)

and α is a scalar independent from the Shear rotation param-

eter.

To get optimal value of Shear rotation ’y’, an optimization

scheme should be applied to CT,ij .

III. PROPOSED ESJD METHOD

TABLE I
ITERATIVE SCHEME TO GET vOPT

Step 1: Initialization, v1 is the solution given in [13]
vn ← v1 .

Step 2: Compute g using (18). If ‖g‖ > μ,
update the value of λ.

λ ← vTnQvn + vTn g .

Step 3: Update the value of vn
vn ← − 1

2
(Q + λJ)−1 g .

(n ← n+ 1 starting with n = 1)
Step 4: Repeat Step 2 and Step 3 according

to the stopping criterion.

Getting the optimal solution for ’y’ is similar to look for

the vector v given in (14) under the following constraint

vT Jv = 1 and v(1) > 0 (19)

Where J =

[
1 0
0 −1

]
.

Then, the JEVD can be summarized as a constrained

minimization problem with the following Lagrangian3.

L (v, λ) = vT Qv + λ
(
vT Jv − 1

)
+ vT g (20)

where λ is the Lagrangian factor.

Note that the Lagrangian given in (20) is the same as the one

in [12]. The solution proposed in [12] consists of computing

λm which minimizes (20) using a polynomial rooting (see [12]

for details), then estimate the optimal vector as follows

vopt = −1

2
(Q + λmJ)−1 g (21)

The problem with this formula appears when the algorithm

converges. The vector g given in (18) converges to [0 0]
T

and Q becomes degenerate, what gives the zero solution to

v and leads to numerical instability especially in the large

dimensional case.

3For the inequality relation v(1) > 0, we just check the first entry of
the obtained vector in (21) and retain the solution when the latter is positive
valued.

However, in [13], the complementary criterion Cc,ij is ne-

glected and only the simplified criterion Cs,ij is kept. Then,

the proposed solution is the generalized eigenvector of the least

positive eigenvalue associated to (Q, J). In the sequel, we note

this solution v1. The problem with this solution appears when

the matrix dimension N is much larger than the number of

matrices K. In this case, the complementary criterion Cc,ij

becomes more important than the simplified one Cs,ij which

makes the simplification of Cc,ij not justified. This remark is

confirmed and illustrated by simulation experiments in section

IV.

To deal with this problem, we have proposed an alternative

solution that overcomes the previous shortcomings. More

precisely, we propose to use an iterative scheme to minimize

our proposed cost function. To avoid the issue faced by JUST

when vector g converges to zero, we use a threshold on

the norm value of g. The value of v is initialized by v1
(the solution of JDTM) and g is computed by (18). If the

Frobinus norm of g is greater than the chosen threshold μ,

then iterative corrections are introduced to v, else v is kept

with no modification. The iterative correction is summarized

in Table I where we used relation (18) to get:

λ = −vT Qv − 1

2
vT g

In our simulations, we have used a threshold value equal

TABLE II
PROPOSED ESJD ALGORITHM

Require : Mk, k = 1, · · · ,K, fixed thresholds τ and μ
and maximum sweep number Mit.

Initialization: V = IN and A = IN .

J =

[
1 0
0 −1

]
.

while maxi,j(|sinh(y)| , |sin(θ)|) > τ or (#sweeps < Mit)
for all 1 ≤ i < j ≤ N

Compute Q using (15).
Estimate v1 using the solution given in [13].
Compute g as given in (18).
If ‖g‖2F > μ

Apply the correction given in Table I.
End if
Up date matrices {Mk|k = 1, · · · ,K} as in (6).

V ← Sij(y)V
A ← ÃSij(−y)

Estimate θ using the solution given in [8].
Update matrices {Mk|k = 1, · · · ,K} as

Mk ← Gij(θ)MkGij(−θ)
V ← Gij(θ)V
A ← AGij(−θ)

end for
end while.

to μ = 1 (chosen in an ad-hoc way) and we observed

that a maximum of 4 iterations is enough to achieve the

algorithm’s potential gain. Therefore, we used a maximum of 4

iterations as stopping criterion. The overall proposed algorithm

is summarized in Table II.
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(d) Proposed ESJD algorithm results

Fig. 1. Median PI versus sweep number in exact JEVD for different scenarios

IV. SIMULATION, RESULTS AND DISCUSSIONS

A. Exact JEVD case

In this subsection, matrices A and {Dk}k=1,...,K are

generated by considering independent variables and normal

distribution for all entries. Then, target matrices {Mk}k=1,...,K

can be obtained using equation (1). Once the target matrices

are obtained, the different algorithms are applied to these

matrices to estimate the JEVD. The Performance Index used

here is the same as in [15] evaluated over 100 Monte-Carlo

realisations.

PI (G) = 1
2N(N−1)

∑N
n=1

(∑N
m=1

|G(n,m)|2
maxk|G(n,k)|2 − 1

)
+

1
2N(N−1)

∑N
n=1

(∑N
m=1

|G(m,n)|2
maxk|G(k,n)|2 − 1

)
(22)

where G = V̂A is the global matrix. The closer the PI is to

zero, the better is the JEVD quality.

Obtained results are given in Figure 1. It’s emphasizing that

as N increases, the convergence rate of different algorithms

decreases. Hence, the considered algorithms are differently

affected by increasing N and our solution is the less affected

one and presents the best convergence rates. The JDTM

algorithm diverges completely when N is greater than 100 due

to the simplified criterion considered by this algorithm which

neglects the complementary criterion given in (17). When N
increases, the complementary criterion becomes important and

discarding it causes divergence problem to JDTM as we can

see in Figure (1d).

B. Approximative JEVD case

Herein, target matrices are supposed to be noise corrupted

according to

Mk ≈ ADkA−1 +Ξk , k = 1, · · · ,K (23)

where Ξk are perturbation (noise) matrices generated here

randomly with gaussian i.i.d. entries. The performance are

evaluated in term of the perturbation level (PL) (a kind of

SNR) expressed by:

PL(dB) = 10 log10

(∥∥ADkA−1
∥∥2
F

‖Ξk‖2F

)
(24)

The simulation results (i.e performance index) are averaged

over 100 Monte Carlo runs. Two cases are considered, the

first one corresponds to small matrix sizes where N = 5 and

K = 5. The second one is the difficult case where K is kept

equal to five and N is increased to 100.

The obtained results are shown in Figure 2, where for each PL

value, estimated performance are taken after twenty sweeps.

As it can be seen in Figure 2a, the proposed algorithm and

JDTM have the same performance in the case of small matrix

dimension and both perform better than JUST and SHRT. In

this case, the simplified criterion is more important than the

complementary one which justifies the negligible impact of

the latter.

Otherwise, in the difficult case, the proposed algorithm is

continuing to reach the best results as compared to the other

ones. The JDTM algorithm diverges in this case due to the

simplification introduced in its JEVD criterion.

V. CONCLUSION

In this paper, we have addressed the JEVD problem by

reformulating the minimization criterion and proposed a new

efficient and stable algorithm. Indeed, after a critical anal-

ysis of the existing methods, JUST, SHRT and JDTM, the

proposed solution is introduced in such a way it overcomes

their shortcomings and improves the desired decomposition in

certain difficult scenarios. Simulation results show that our

algorithm presents good performance in the case of large

matrix dimension where others diverge.
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