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Abstract—This work examines the problem of modeling and
containing multiple cyber-threats that propagate across multiple
subnets of a data network. With regard to threat modeling, we
propose to employ the Birth-Death-Immigration (BDI) model
pioneered by Kendall in his seminal work of 1948 [1]. With
regard to threat containment, assuming that a certain resource
budget is available to mitigate the threats, we illustrate how the
notable properties of the BDI model can be exploited to provide
the optimal resource allocation across the attacked subnets.

I. INTRODUCTION AND MOTIVATION

In our digital era, an ever-increasing number of activities

rely on the exchange of information that takes place across a

network of interconnected entities. While the network attributes

enable appealing opportunities, when a network is in place

there is always a theoretical possibility that a cyber-threat could

rise. As a matter of fact, networks are natively exposed to

the rapid propagation of malicious threats (e.g., a worm, a

malware, or a virus), whose dynamics are often regulated by

cascade mechanism resembling those governing the spread of

epidemic diseases. A recent instance of this type is WannaCry,

the malware performing a famous worldwide network attack

launched in May 2017 [2]. The chameleonic nature of cyber-

threats makes them capable to renew themselves, exploiting the

new vulnerabilities of the cyber systems that arise as the result

of technology advances. In order to contain the threats, the

defender must put in place proper countermeasures, including:

strategies for threat identification; analysis of the threat propa-

gation algorithm; production of software aimed at defeating

the threat (e.g., security patches to the operating systems,

update of the anti-viruses). All these defense strategies are

costly (e.g., in terms of time, working/computational power),

and it is demanding to deliver these countermeasures in a

timely manner, i.e., at the early stage of threat propagation.

In addition, the defender is typically faced with multiple

subnets that experience simultaneously different types of at-

tacks, whose relative importance must be accurately judged in

view of the overall containment task. This work focuses on

two fundamental issues: i) providing an analytical model for

threat propagation, aimed at characterizing the power of the

threats associated to the different subnets; ii) establishing some

optimal recipe to allocate the resources available to mitigate

threats’ propagation.

A. Related Work

This work belongs to the field of signal processing for cyber-

security, which addresses topics as: identifying patterns of

intrusions and data falsification [3], [4]; detecting anomalous

activities in the network traffic [5], [6]; discovering the route

of clandestine information flows across the network [7]; iden-

tifying a maliciously camouflaged source under an adversarial

perspective [8]; locating the sources of Distributed-Denial-of-

Service attacks [9]–[11]; containing the spread of cyber-threats

over networks, which is the focus of this work.

Significant commonalities emerge between the mechanism

of threat propagation and other propagative phenomena, such

as epidemics, or population growth. For this reason, several

mathematical models borrowed from other disciplines (e.g.,

natural and social sciences, biology, medical science [12]–[14])

have been applied also in the cyber-security domain — see [15]

for a comprehensive account. Several studies have shown, by

theoretical considerations as well as by experimental verifica-

tion, that epidemic models are able to capture many important

aspects of the cyber-threat dynamics [16], [17]. The primal,

deterministic epidemic models [12] have been subsequently

generalized to stochastic models, in order to face the the high

and unpredictable variability of several complex network appli-

cations. With regard to stochastic threat propagation, a relevant

paradigm is furnished by queueing theory [18], where nodes

“arrive” (i.e., they get sick) following a certain arrival process,

while nodes “depart” (i.e., they are cured) according to a certain

departure process [19]. Two main features emerge from the

relevant technical literature regarding threat propagation over

networks: i) due to the lack of knowledge about the network

details, cyber-threat propagation must be often described in

terms of some summary/average parameters, according a “ther-

modynamic” approach that enables a satisfying description at

a macroscopic level; ii) the number of infected nodes grows

exponentially in the early stage of infection before the curing

process becomes effective [20], which motivates the successful

use of stochastic branching-type processes, namely, the Galton-

Watson process [21], and the Fibonacci model [22]. These

models are discrete-time models, where the time for a host

to get infected is modeled as a deterministic time. In this work

we shall focus instead on a continuous-time model, with the

additional flexibility of working with random times.

B. This work

One of the most elegant stochastic models that capture

the aforementioned fundamental features is the Birth-Death-

Immigration (BDI) proposed by Kendall in 1948 [1], whose

application to the cyber-security domain has been perhaps

overlooked so far. It is a stochastic model that encodes the main

features into three parameters (birth, death, and immigration
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Fig. 1. Representation of the considered scenario. First, multiple threats are
spreading across N subnets of a data network. Then, the agency employs an
optimal allocation policy to distribute the available curing capacity.

rates) with a clear physical meaning. The considered setting is

schematically illustrated in Fig. 1. The network is partitioned

into N subnets, where each subnet is susceptible to a specific

threat, which is disseminated across the individual subnet by

one or more attackers. The attackers act as primary sources

of infection: they explore continually, as time elapses, new

portions of the network, looking for new vulnerable nodes.

When a vulnerable node is found: i) it gets “sick” after

a certain (random) time; and ii) it becomes a secondary

source of infection. According to the terminology used in the

context of the BDI model, the aforementioned mechanism is

characterized by two main quantities (subscript ℓ refers to the

ℓ-th subnet): the “immigration” rates {νℓ}, which represent

the number of hosts per unit time infected by the primary

source of attack (external infection rate); and the “birth” rates

{λℓ}, which represent the rate of hosts infected by another

infected host (internal infection rate). The defender must put

in place proper countermeasures to contain the multiple threats.

When countermeasures are in use, nodes are “cured” at certain

(random) times, and the “death” rates {µℓ} represent the

number of cured hosts per unit time. The unavoidable resource

limitations mentioned in the previous section will be abstracted

by saying that a total-rate constraint must be imposed, such

that the overall curing capacity must fulfill:
∑N

ℓ=1 µℓ ≤ C. We

remark that different types of resources (e.g., human resources,

software installation, computing power) might be needed to

tackle different threats, and, hence, handling the mapping from

resources to curing rates might be a nontrivial task.

II. BDI FORMAL MODEL

Let I(t) be the number of infected nodes at time t, let

p(n; t) , P[I(t) = n], and let further

Ψ(x; t) , E[exI(t)] (1)

be the Moment Generating Function (MGF) of the number of

infected nodes at time t. For the BDI model, it is possible

to find a closed-form solution for the MGF (and, then, for

the corresponding probability distribution) [14], [23], by de-

scribing the time evolution of the MGF through a first-order

linear partial differential equation, namely through Eq. (6)

further ahead. We start by outlining shortly how such time

evolution can be obtained. Following the classic queueing

theory paradigm, the infection and the curing processes will

be modeled as memoryless, which amounts to say that the

arrival process is a Poisson process and that the service times

are exponentially distributed [15], [19]. Independence across

distinct nodes is assumed. Let us consider a vanishing time

interval of size ǫ. When there are n − 1 already infected

nodes in the system, the infection (i.e., arrival) process is a

Poisson process of global rate λ(n) , (n − 1)λ + ν, which

aggregates the internal (i.e., (n− 1)λ) as well as the external

(i.e., ν) infection rate components. Using the known properties

of Poisson processes, the probability of reaching state n is

approximately given by λ(n)ǫ. Likewise, when there are n+1
infected nodes in the system, and using the known properties

of the exponential distribution, the probability of reaching state

n is approximately given by µ(n)ǫ, with µ(n) , (n+1)µ. For

the same reasons, the probability of reaching state n from state

n ± k, with k > 1, is an infinitesimal of higher order, and is

neglected, finally yielding:

p(n; t+ ǫ) = λ(n)ǫ p(n− 1; t) + µ(n)ǫ p(n+ 1; t)

+ [1− λ(n)ǫ − µ(n)ǫ] p(n; t). (2)

Dividing by ǫ, and taking the limit as ǫ → 0, we get the system

of classic birth-and-death master equations [1]:

dp(n; t)

dt
= λ(n) p(n− 1; t)− [λ(n) + µ(n)] p(n; t)

+ µ(n) p(n+ 1; t). (3)

If we multiply both sides of the above equation by enx, and

sum over n, after simple algebraic manipulations we obtain:

∞
∑

n=0

dp(n; t)

dt
enx =

d

dt

∞
∑

n=0

p(n; t)enx =
∂Ψ(x; t)

∂t

= λex
∂Ψ(x; t)

∂x
+ νexΨ(x; t)− (λ+ µ)

∂Ψ(x; t)

∂x

−νΨ(x; t) + µe−x ∂Ψ(x; t)

∂x
, (4)

which, grouping the terms, corresponds to the first-order linear

partial differential equation in (6). Solving this equation pro-

vides us the MGF, from which it is then possible to retrieve

the probability distribution of the number of infected nodes.

The next property summarizes this important known result —

see [14], [23] for a detailed proof.

Property 1 (Statistical characterization of I(t)):

1) Let:

a(x) , [λ(1 − ex) + µ(1− e−x)], b(x) , ν(ex − 1).
(5)

Then, the moment generating function of I(t) obeys the

following first-order linear partial differential equation:

∂Ψ

∂t
+ a(x)

∂Ψ

∂x
= b(x)Ψ. (6)

2) Let us introduce the following normalized quantities:

∆ , λ− µ, ρ , λ/µ, η , ν/λ, (7)

and let also:

πt ,
e∆t − 1

e∆t − 1/ρ
, qt ,

e∆t − ρ

e∆t − 1
. (8)
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Then, the moment generating function that solves (6) is

defined in the range x < ln(1/πt), and is equal to:

Ψ(x; t) =

(

1− πt

1− πt ex

)η+n0
(

1− qt e
x

1− qt

)n0

, (9)

where n0 is the initial number of infected nodes.1

�

A. Asymptotic (large t) regimes

The detailed statistical characterization offered in Property 1
enables a powerful study of the asymptotic behavior of the

BDI process, which will be useful in our setting. Some known

asymptotic results will be collected in Properties 2 and 3 further

ahead. We introduce preliminarily some notation. A negative

binomial random variable of parameters r > 0 and 0 < p < 1
is denoted by Nb(r, p), with probability mass function [24]:

pnb(n) =

(

n+ r − 1

n

)

(1 − p)rpn, n = 0, 1, . . . (10)

A unit-scale gamma random variable with shape parameter r >
0 is denoted by G (r), with probability density function [24]:

fG(z) =
1

Γ(r)
zr−1 e−z, z > 0, (11)

where Γ(·) is the (complete) gamma function. Finally, let

Y (r, s,m), with r > 0, s > 1, and m ∈ {0, 1, . . .}, be a

random variable with moment generating function:

ΨY(x) =

(

1

1− xs/(s− 1)

)r+m (

1− x

s− 1

)m

, (12)

defined for x < 1− 1/s.

We have the following result.

Property 2 (Asymptotic regimes of operation):

I(t)
d−→

t→∞

Nb(η, ρ), if ρ < 1,

I(t)

λt

d−→
t→∞

G (η), if ρ = 1,

I(t) e−∆t d−→
t→∞

Y (η, ρ, n0), if ρ > 1

(13)

with
d−→

t→∞

denoting convergence in distribution as t → ∞ [25].

�

We see from Property 2 that three possible regimes exist.

The first one (ρ < 1) is a stable, subcritical regime, where the

probability distribution of the number of infected nodes I(t)
approaches, as time elapses, a negative binomial distribution

of parameters η and ρ. The second one (ρ = 1) is an

unstable, critical regime, where the probability distribution of

I(t) scaled by λt, converges to a gamma distribution with

unit scale parameter and with shape parameter equal to η.

Loosely speaking, under this regime the number of infected

nodes increases linearly with time. The third regime (ρ > 1) is

a strongly unstable, supercritical regime, where the probability

distribution of I(t) scaled by e∆t, converges to the distribution

of the random variable Y (η, ρ, n0). The number of infected

nodes here increases exponentially with time.

1For ρ = 1, Eq. (9) holds true if πt = λt

λt+1
and qt = λt−1

λt
, which is

obtained from (8) by setting ρ = λ/(λ−∆) and taking the limit as ∆ → 0.
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Fig. 2. Time evolution of the number of infected nodes under the strongly
unstable regime. Two realizations (blue and red curves) of the random process
I(t) are displayed, along with the function e∆t (black dashed curve). In the
inset, the normalized process I(t)e−∆t is depicted. The two points marked
by the arrows correspond (approximately, since the time horizon is finite) to
two distinct realizations of the limiting random variable, I⋆.

B. The Strongly Unstable Regime (ρ > 1)

The strongly unstable regime is of interest whenever the

curing rate is smaller than the infection rate, a situation

frequently met at the early stages of the infection propagation.

Under this regime, the pertinent (ρ > 1) result in Property 2
can be refined by establishing that the number of infected nodes

diverges almost surely at an exponential rate equal to ∆.

Property 3 (Almost sure exponential divergence of I(t) under

the strongly unstable regime): The scaled process I(t)e−∆t

converges almost surely to a limiting random variable I⋆

distributed as Y (η, ρ, n0):

I(t)e−∆t a.s.−→
t→∞

I⋆ ∼ Y (η, ρ, n0), (ρ > 1). (14)

�

The result in Property 3 deserves special attention in our set-

ting, for the following reasons. Since almost sure convergence

takes place over the sample paths, Property 3 reveals that, even

if the process I(t) is random, (almost) all realizations of I(t)
will share the same behavior:

I(t) ≈ I⋆ e∆t for large t, (15)

i.e., they eventually increase exponentially fast with rate ∆. In

Fig. 2 we illustrate such behavior by depicting two realizations

of the process (case ρ > 1) along with the theoretical exponen-

tial curve e∆t (dashed line). We see that all these realizations

stay nearly parallel to the theoretical exponential curve, which

matches perfectly (14) and (15). The different heights of the

curves correspond to the different realization of the random

multiplying constant, I⋆. The latter behavior is magnified in

the inset of Fig. 2, where I(t)e−∆t is depicted.

III. OPTIMAL RESOURCE ALLOCATION FOR THREAT

MITIGATION

We are now in the position of tackling the problem of

resource allocation for threats containment. We will carry out

the analysis by assuming that the infection vectors λ and ν are

perfectly known. The case of unknown parameters can be dealt

with by designing proper estimators that leverage the properties

of the BDI model, as detailed in [26].
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The curing rate that will be allocated to the ℓ-th subnet

will be denoted by µℓ, and the global curing rate that can be

delivered,
∑N

ℓ=1 µℓ, is limited to a maximum curing capacity,

C. Ideally, one would like to solve the optimization problem:

min
µ

N
∑

ℓ=1

Iℓ(t) s.t.

N
∑

ℓ=1

µℓ ≤ C. (16)

However, the functions Iℓ(t) are random processes, and, hence,

we must choose a proper cost function that is amenable

to optimization. We must distinguish two regimes for the

optimization, determined by the available system capacity C.

The first regime corresponds to the case that λtot ,
∑N

ℓ=1 λℓ > C. Clearly, under this regime, at least for one

ℓ we should have λℓ > µℓ. Let us accordingly define:

∆max , max
ℓ=1,2,...,N

(λℓ − µℓ) > 0. (17)

As it can be seen from the next proposition, the quantity

∆max represents the exponential rate of propagation associated

to the overall number of infected nodes, in the presence of

countermeasures, and when the available curing capacity is

smaller than the internal infection rate.

Proposition 1 (Exponential divergence of the overall number

of infected nodes): If λℓ > µℓ for all ℓ = 1, 2, . . . , N , then,

almost surely, the overall number of infected nodes diverges

exponentially with exponent equal to ∆max:

N
∑

ℓ=1

Iℓ(t)e
−∆maxt a.s.−→

t→∞

I⋆sum. (18)

The random variable I⋆sum has the following MGF:

∏

ℓ∈S

(

1

1− xρℓ/(ρℓ − 1)

)ηℓ+n0,ℓ
(

1− x

ρℓ − 1

)n0,ℓ

(19)

for x < 1− (minℓ∈S ρℓ)
−1, where

S , {ℓ ∈ [1, N ] : λℓ − µℓ = ∆max}, (20)

and where ηℓ, ρℓ and n0,ℓ are the parameters pertaining to the

ℓ-th subnet. In addition, if λℓ ≤ µℓ for some ℓ, the convergence

in (18) holds in probability.

Proof: In view of (20), λℓ − µℓ = ∆max for all ℓ ∈ S.

Thus, straight application of Property 3 yields:

Iℓ(t)e
−∆maxt a.s.−→

t→∞

I⋆ℓ ∼ Y (ηℓ, ρℓ, n0,ℓ), ∀ℓ ∈ S. (21)

Let us now show that Iℓ(t)e
−∆maxt converges to zero in

probability when ℓ /∈ S, namely that:

Iℓ(t)e
−∆maxt p−→

t→∞

0, ∀ℓ /∈ S. (22)

To this aim, we will make repeated use of the following result

regarding stochastic convergence [25]:

Y (t)
d−→

t→∞

Y, and f(t) −→
t→∞

0, =⇒ f(t)Y (t)
p−→

t→∞

0.

(23)

For the case ρℓ < 1, we know that Iℓ(t) converges in

distribution in view of Property 2. Setting Y (t) = Iℓ(t)
and f(t) = e−∆maxt into (23), we conclude that (22)

holds true because e−∆maxt vanishes as t goes to infin-

ity. If ρℓ = 1, then (λℓt)
−1 Iℓ(t) converges in distribution

in view of Property 2. Setting Y (t) = (λℓt)
−1 Iℓ(t) and

f(t) = (λℓt)e
−∆maxt into (23), we conclude that (22) holds

true because (λℓt)e
−∆maxt vanishes. Finally, if ρℓ > 1, then

Iℓ(t)e
−∆ℓt converges in distribution in view of Property 2.

Setting Y (t) = Iℓ(t)e
−∆ℓt and f(t) = e(∆ℓ−∆max)t into (23),

we conclude that (22) holds true because e(∆ℓ−∆max)t vanishes

for all ℓ /∈ S.

Combining (21) and (22), we have in fact proved that the

convergence in (18) holds in probability, provided that we

set I⋆sum =
∑

ℓ∈S
I⋆ℓ . It is straightforward to show that such

convergence can be strengthened to a.s. convergence when

λℓ > µℓ for all ℓ = 1, 2, . . . , N .

Claim (19) now follows because: the processes correspond-

ing to different subnets are statistically independent; the MGF

of the sum of independent variables is given by the product of

the MGFs of the variables; in view of (21) the MGF of I⋆ℓ is

given by (12), with the choices: r = ηℓ, s = ρℓ, and m = n0,ℓ.

The main consequence of Proposition 1 is that, in the

case λtot > C, the asymptotic behavior of the number of

infected nodes across the N subnets is determined by the

largest exponent, namely
∑N

ℓ=1 Iℓ(t) ≈ I⋆sume
∆maxt. It is

thus meaningful to focus on minimizing the exponent, which

amounts to reformulate (16) as:

min
µ

max
ℓ∈[1,N ]

(λℓ − µℓ) s.t.

N
∑

ℓ=1

µℓ ≤ C, (24)

It is easy to show that the sought minimizer can be obtained

through the following reverse water-filling solution [27]:

µ⋆
ℓ = max(0, λℓ − γ) (ℓ = 1, 2, . . . , N) (25)

with γ being chosen so as to meet the constraint
∑

ℓ=1 µℓ = C.

We now switch to examine the most favorable case where

λtot < C. Now it is clearly possible to meet the desirable

requirement λℓ < µℓ for all ℓ = 1, 2, . . . , N , which prevents

from exponential divergence in all subnets. From a more

technical perspective, we see from Property 2 that in this

case we cannot rely on minimization at the exponent. An

alternative and reasonable choice is to minimize the expected

number of infected nodes. To this aim, we mention that the

convergence expressed by the first equation in (13) is in fact

implied by the stronger result that the MGF of I(t) converges

to the MGF of Nb(η, ρ). Since i) convergence of the MGF

implies convergence of moments [25], and ii) the expectation

of Nb(η, ρ) is equal to ηρ
1−ρ

= ν
µ−λ

[24], we can write:

E

[

N
∑

ℓ=1

Iℓ(t)

]

−→
t→∞

N
∑

ℓ=1

νℓ
µℓ − λℓ

. (26)

We shall accordingly focus on the optimization problem:

min
µ

N
∑

ℓ=1

νℓ
µℓ − λℓ

s.t.

N
∑

ℓ=1

µℓ ≤ C (27)

with µℓ > λℓ for all ℓ = 1, 2, . . . , N . Such a problem can be

solved by the method of Lagrange multipliers. We introduce

the Lagrangian J(µ) =
∑N

ℓ=1,
νℓ

µℓ−λℓ
+ β

∑N
ℓ=1 µℓ, where β
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Fig. 3. Number of infected nodes spreading across N = 3 subnets. The
vectors of internal and external infection rates are λ = [5, 4, 3.9] and ν =
[2.5, 4, 7.8], respectively. When C = 0.8λtot (leftmost panel), the number of
infected nodes grows exponentially and the countermeasures are not sufficient
to contain such undesired behavior. When C = 1.1 λtot (rightmost panel), the
optimization procedure is able to guarantee stability of the threat growth.

is the Lagrange multiplier. Taking the partial derivative with

respect to the k-th component, we get:

∂J

∂µk

= − νk
(µk − λk)2

+ β = 0 ⇒ µk = λk +
√

νk/β. (28)

Imposing the constraint with equality yields the optimal µ⋆
k:

µ⋆
k = λk + δC

√
νk

∑N
ℓ=1

√
νℓ

(k = 1, 2, . . . , N) (29)

where δC = C − λtot.

IV. SIMULATION RESULTS

We now illustrate an application of the aforementioned

optimization procedure. A more detailed analysis of the values

assumed by the various parameters in a real setting, and

a careful comparison with semi-realistic threat-propagation

models, are presented in [26].

In Fig. 3, the overall number of infected nodes spreading

across N = 3 subnets is displayed as a function of time for

two cases, namely, λtot > C, and λtot < C. The vector of

internal infection rates is λ = [5, 4, 3.9], whereas the vector

of external infection rates is ν = [2.5, 4, 7.8]. The leftmost

panel refers to the less favorable scenario where C = 0.8λtot,

namely, the countermeasures cannot be sufficient to contain the

exponential propagation of the threat. In particular, the number

of infected nodes grows exponentially (a logarithmic scale is

adopted) up to about one fifth of the time window; afterwards,

a sharp slope variation occurs as a consequence of the applied

countermeasures following the optimization procedure.

In contrast, the rightmost panel addresses the advantageous

situation where C = 1.1λtot. In this case, the optimization

is performed by exploiting (29), and the final result is that

the threat containment is effective in preventing the undesired

exponential behavior.
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