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Abstract—In this paper, deep convolutional neural networks
are used to segment heart sounds into their main components.
The proposed method is based on the adoption of a novel deep
convolutional neural network architecture, which is inspired
by similar approaches used for image segmentation. A further
post-processing step is applied to the output of the proposed
neural network, which induces the output state sequence to be
consistent with the natural sequence of states within a heart
sound signal (S1, systole, S2, diastole).

The proposed approach is tested on heart sound signals
longer than 5 seconds from the publicly available PhysioNet
dataset, and it is shown to outperform current state-of-the-art
segmentation methods by achieving an average sensitivity of
93.4% and an average positive predictive value of 94.5% in
detecting S1 and S2 sounds.

I. INTRODUCTION

Cardiac auscultation is arguably the simplest, quickest,
and most cost-effective first line of screening for a large
number of heart conditions. On the other hand, heart sounds
are difficult to identify and analyze by the human listener, as
they are faint, significant events are closely spaced in time,
and their frequency content is at the lower end of the audible
frequency range [1]. These reasons have motivated recent
research efforts in automatizing part or the entire process of
analysis of the phonocardiogram (PCG) signal, in order to
extract useful diagnostic information from it.

A key step required in the analysis of PCG signals is
represented by the segmentation of heart sounds in their
fundamental components. In fact, each heart cycle is nor-
mally divided into a first heart sound (S1), a systolic interval,
a second heart sound (S2), and a diastolic interval. Extra
sound components of interest are represented by the third
and fourth heart sounds (S3 and S4), murmurs, ejection
clicks, splits, etc.

Several solutions have been proposed in the literature to
perform PCG segmentation (see [2] for a general overview).
A first class of segmentation algorithms is based on the
extraction of envelograms from the PCG signals and the use
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of peak-picking algorithms to estimate the principal heart
sounds S1 and S2, as well as their boundaries. Such envel-
ograms can be defined in the time domain (e.g., Shannon
energy [3]), in the frequency domain (e.g. S-transform [4]),
and other transform domains (e.g., wavelets [5], [6]).

A second class of segmentation algorithms leverages
statistical models as the hidden Markov model (HMM) and
the hidden semi-Markov model (HSMM) to include prior
information about the sequential nature of PCG signals.
In particular, the HMM has been adopted for heart sound
segmentation by [7] and later by [8], which extended this
approach by using Gaussian mixture model (GMM) priors
to model the emission distributions. More recently, HSMMs
have shown to outperform HMMs by introducing explicit
modeling of the statistics of the time spent by the PCG signal
in each state [9]. Then, refined modeling of the emission
distributions have shown to improve the overall performance
of HSMM-based segmentation algorithms: namely, support
vector machines (SVMs) [10] were proposed and later emis-
sion distributions based on the logistic regression function
were used [11], thus leading to state-of-the-art results.

A third class of segmentation algorithms is based on the
extraction of features from the PCG, which are then assigned
to the different heart sound states using a classifier. Some
of the classifiers used for heart sound segmentation include
SVMs [12], different kinds of artificial neural network
(ANN) [13], and, more recently, deep neural networks [14].

In contrast with the variety of approaches presented in
the literature, PCG segmentation still represents a chal-
lenging problem to solve when considering its applica-
tion in real-world, noisy environments. In fact, the results
of the 2016 PhysioNet Challenge on the classification of
normal/abnormal heart sound recordings have shown that
only a limited increase in classification performance can
be achieved by using more sophisticated sound classifiers.
On the other hand, improved segmentation algorithms are
expected to be the best point of entry to obtain more
significant improvements in heart sound classification [15].

This work proposes a novel heart sound segmentation
approach, which is based on the use of a deep convolu-
tional neural network (CNN). Although deep CNNs have
been recently adopted for heart sound classification, i.e.,
to discriminate between normal and abnormal heart sounds
[16], to the authors’ knowledge, this work represents the
first contribution using CNNs specifically for heart sound
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segmentation . The proposed method, unlike the deep learn-
ing solution in [14], does not require the adoption of a heart
sound activity detection (HSAD) step to initially detect PCG
segments before performing recognition, neither it relies on
the extraction of ad hoc features from the signal. On the
other hand, it can be applied directly to the PCG signal
itself or to envelograms extracted from it. In this way, the
sounds features that minimize segmentation errors are learnt
directly from training data by the CNN.

These observations, jointly with the recent success
achieved by CNN architectures in related tasks, e.g., image
segmentation [17], motivate the use of deep CNNs for
heart sound segmentation, which are expected to efficiently
capture the characteristics of heart sounds corresponding
to different PCG states, due to their ability in modeling
complex signal behaviors and their robustness to high signal
variability.

Therefore, this work proposes a novel segmentation ap-
proach that involves the following steps:

1) pre-processing of the PCG signal and extraction of

envelograms from it;

2) application of a trained CNN to different portions of
the envelograms extracted from the PCG signal;

3) combination of the CNN outputs corresponding to the
different portions of the PCG, in order to produce the
estimated state sequence.

The remainder of this paper is organized as follows: the
proposed segmentation method is presented in Section II,
and the experimental methodology and results are reported
in Section III. Finally, conclusions are drawn in Section IV.

II. METHODOLOGY

In this section, the three main steps of the proposed
segmentation algorithm are described in details. The pro-
posed approach consists in a training phase and a testing
phase. Signals involved in both training and testing are pre-
processed according to the methods described in Section
II-A. Labeled training data are used to determine the pa-
rameters (weights) that define the operations implemented
by the CNN. In the testing phase, the trained CNN is applied
to the pre-processed testing data, and the corresponding
output undergoes a further post-processing stage in order
to generate the estimated state sequence associated to each
heart sound in the testing set (see Fig. 1).

A. Pre-processing

PCG signals are first filtered with high-pass and low-pass
Butterworth filters of order two with cut-off frequencies
equal to 25 Hz and 400 Hz, respectively. Then, the spike
removal procedure described in [9] is applied to the filtered
signals. The four envelograms/envelopes considered in [11]
are extracted from the filtered signals: i) homomorphic en-
velogram, ii) Hilbert envelope, iii) wavelet envelope, and iv)
power spectral density (PSD) envelope. Such envelograms
are then downsampled at 50 Hz [11]. Finally, all the four
envelograms/envelopes are normalized in order to have zero
mean and unit variance.

Pre-processing Pre-processing

| |

CNN weights
Train CNN Apply CNN

I

Post-processing

State sequence

Fig. 1. Diagram of the proposed segmentation method: training phase and
testing phase.

For each heart sound, the normalized envelograms are
collected in the 4-dimensional signal x(t), where x(t) € R*
fort =0,...,7 —1, and where ¢ indicates the time instant.
Then, s(t) is defined as the sequence containing the state
labels associated to each time instant, i.e., s(¢) € {0, 1,2, 3},
where state 0 corresponds to an S1 sound, state 1 to a systole
interval, state 2 to an S2 sound, and state 3 to a diastole
interval.! Then, given a heart sound signal x(t), the objective
of the segmentation algorithm is to provide an estimate of
the corresponding state sequence s(t).

Four-dimensional patches of fixed length n are extracted
from the signal x(¢), with a given stride 7. Such portions of
the signal x(t) represent the inputs of the CNN. They are
denoted by X; € R"** and they are obtained as

x(i-T)
X; = : ) )]
x(i-7+n—1)
for i = 0,...,[T=1=2], where |z] denotes the greatest

integer lower than or equal to z.

B. Convolutional neural network architecture

Various CNN architectures have been presented in the
quickly growing deep learning literature. This work proposes
the use of a CNN architecture which is inspired by the U-
net originally presented in [17] for image segmentation. The
proposed architecture is reported in Fig. 2.

Such deep network contains convolutional layers which
are followed by rectified linear unit (ReLU) activation
functions [18]. The convolutional layers implement 1-
dimensional convolutions of their inputs with different sets
of filters (feature maps). Each filter in a feature map of a
convolutional layer is defined by 3 weights. Moreover, the
proposed architecture includes max pooling layers, which
are responsible for downsampling (by a factor 2) the out-
puts of middle layers, as well as upsampling layers (by a

'In this work, we consider only the 4 main PCG components for
segmentation, i.e., S1, systole, S2, and diastole.
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Fig. 2. Architecture of the deep CNN used in the proposed segmentation algorithm. The numbers inside the boxes in the diagram represent the number
of feature maps in the corresponding convolutional layer. The numbers on the right hand side of the figure indicate the spatial dimension of the inputs

and outputs of the layers contained in the corresponding row.

factor 2) which are interleaved with the late convolutional
layers. This choice is fundamentally motivated by the fact
that the adopted CNN structure implements a dyadic scale
decomposition, which has a nice analog with a multires-
olution wavelet decomposition, which has been shown to
be effective for PCG segmentation [5], [6]. In fact, such
CNN implements an encoder-decoder architecture, in the
sense that the outputs of the middle layers offer a compact
representation of the input signals in a low-dimensional
manifold which contains the main information about the
segmentation state of the PCG, thus reducing the impact of
noise and signal variability. Moreover, it is possible to note
that the overall receptive field of the proposed CNN is large,
which means that information coming from neighboring
portions of the input signal is effectively combined when
deciding the state of a particular sample drawn from the
PCG signal under test. Finally, skip connections are also
inserted in the network, in order to allow direct transfer of
information from the first layers to the late layers.

The inputs of convolutional layers are zero-padded so that
the corresponding outputs have the same spatial dimensions
as the input. Finally, the last convolutional layer implements
4 feature maps with a single weight each, and it is followed
by a softmax activation function [18]. Therefore, on denoting
by ®gy(-) the function implemented by the proposed CNN,
where 6 represents the set of weights that define the convo-
lutional layers in the network, the CNN outputs are given
by

Y, = 04(X,). 2

Then, each row of the matrix Y; € R™** contains the

probability that the corresponding sample of the PCG signal
belongs to state 0, 1, 2, or 3.

C. Post-processing

Depending on the values of the patch size n and the
stride 7, for a given time instant ¢ of the heart sound signal
there can be different output matrices Y, containing the

probabilities that such time instant belongs to one of the 4
available states. In fact, overlapping patches are used in order
to minimize the impact on segmentation of data samples
near the border of each patch. Therefore, the information
obtained from different overlapping patches is combined
by simply averaging the state probabilities associated to
different output matrices Y ;. Then, a first coarse estimate
of the state sequence s(t), which is denoted by 3(¢), is ob-
tained by choosing the state corresponding to the maximum
probability among S1, systole, S2, or diastole.

On the other hand, it is straightforward to note that such
state sequence §(t) does not incorporate any prior informa-
tion about the fact that only few transitions are available
between different states, as an S1 event is always followed
by a systole event, a systole event is always followed by
an S2 event, etc. Therefore, in order to force the output
sequence to contain only admissible transitions among states,
a further post-processing step is performed on 5(¢), which
leads to the definition of the output sequence §(t) as follows:
5(0) = 5(0), and

)

o] &) , if 8(t) =
s(t) = { $(t—1) , otherwise

3
for ¢t > 0. Note that the output state sequence $(t) contains

only admissible state transitions, thus providing a consistent
way to localize the different segments of the heart sounds.

(3(t—1)+1) mod 4

III. EXPERIMENTS

The proposed segmentation algorithm is compared with
the method described in [11], which is currently considered
as the state-of-the-art PCG segmentation algorithm. Such
method was also adopted as the segmentation standard
for the 2016 PhysioNet Challenge on the classification of
normal/abnormal heart sound recordings [19].2

2The HSMM-based segmentation algorithm in [11] was imple-
mented using the code made available online by the authors at
https://physionet.org/physiotools/hss/.
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The performance of the proposed CNN-based segmen-
tation algorithm and of the HSMM-based method in [11]
is tested via 10-fold cross-validation on the available heart
sound data. Namely, the available heart sound dataset is di-
vided into 10 subsets. Then, tests are performed by selecting
iteratively 1 out of this 10 subsets as the testing sets, while
using the remaining 9 subsets for training. Note that subsets
are divided so as to guarantee that sounds from patients
contained in the testing set are not contained in the training
set, in order to avoid overfitting.

The CNN used in the proposed segmentation method is
trained with patches of dimension n = 256 that are extracted
from the training recordings with a stride of 7 = 32 samples.
The weights of the CNN are learnt using the categorical
cross-entropy loss function [18] and the Adam optimizer
[20] with learning rate equal to 10~*. The maximum number
of training epochs is fixed to 15, and early stopping is
adopted by extracting 10% of the training data and using
them for cross-validation, thus retaining the weights corre-
sponding to the minimum loss function on cross-validation
data. Note that the data used for cross-validation are not used
to train the network.

A. Performance metrics

A first performance metric used in this work is the sample
accuracy (A), which represents the fraction of samples in
the output sequence 5(t) that are correctly allocated to the
corresponding state in the ground truth sequence s(t).

Two further metrics are used to evaluate the performance
of the proposed algorithm in determining the position of
the fundamental heart sounds S1 and S2: positive predictive
value (P4) and sensitivity (S). Such metrics are computed
according to the description in [9], i.e., a true positive (1},) is
counted when the center of an S1 (S2) sound in the estimated
sequence §(t) is closer than 60 ms from the center of the
corresponding S1 (S2) sound in the ground truth sequence
s(t). All other S1 and S2 sounds in the estimated state
sequence are considered as false positives (F},). Then, the
positive predictive value Py is given by:

T,

Po=—2 4
+ T,+ I, (€]
On the other hand, the sensitivity S is defined as:
T,
S =2 (5
Ttot

where T;,; represents the total number of S1 and S2 sounds
in the ground truth state sequence s(t).

All performance metrics are computed for each recording
in the test set and then averaged over the test set. Finally,
the values corresponding to the different 10 test subsets are
reported in Section III-C.

B. Materials

The heart sounds used for the experiments presented in
this work were taken from the ensemble of sounds that were
made publicly available for the PhysioNet/CinC challenge
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Fig. 3.  Segmentation performance of the HSMM-based algorithm pre-

sented in [11] (blue boxes, on the left) and the proposed CNN-based
approach (red boxes, on the right), when tested on heart sound record-
ings from the PhysioNet datasets. Boxplots of the sample accuracy (A),
sensitivity (S), and positive predictive value (Py) obtained from 10-fold
cross-validation on the dataset.

2016. In particular, we considered 427 heart sounds recorded
from 130 patients in different clinical and non-clinical en-
vironments.> From those, 181 sounds are collected from
patients with pathological heart lesions (most commonly
mitral valve prolapse), as assessed by echocardiography. The
remaining 246 sounds are collected from healthy patients.
Sound recordings have variable durations in the range from
5.12 to 35.5 seconds and they are sampled at 1 kHz. They
are collected from several spots over the chest and they
are possibly corrupted by different sources and noise levels.
The annotations provided with the dataset are computed via
the analysis of synchronous ECG recordings, based on the
agreement between five different automatic R-peak and end-
T-wave detectors [2].

C. Results and discussion

In Fig. 3 are reported the boxplots corresponding to
the values of sample accuracy (A), sensitivity (S), and
positive predictive value (P) achieved by the HSMM-
based segmentation algorithm presented in [11] and by the
proposed method.

It is possible to observe that the proposed CNN-based
algorithm guarantees better performance than the HSMM-
based algorithm for all the considered metrics. These results
hint to the fact that the proposed CNN can capture more
effectively the inter- and intra-sound state variability than
the logistic regression model used in [11]. Moreover, the
proposed CNN incorporates effectively information coming
from neighboring time samples, due to the large receptive
field guaranteed by the network architecture described in
Section II-B. At the same time, the proposed solution allows
for a more flexible modeling of the time spent by the PCG in
online at

3The sounds are available

https://PhysioNet.org/physiotools/hss/.
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each state (sojourn time) with respect to the HSMM-based
solution.
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(a) HSMM-based algorithm by Springer et al. [11]
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Fig. 4. Segmentation example: PCG signal (black lines), true states derived
from the dataset annotations (green, dashed lines), states assigned by the
HSMM-based algorithm in [11] ((a), blue line), and states assigned by the
proposed CNN-based segmentation algorithm ((b), red line).

This behavior can be clearly observed in Fig. 4, where it
is possible to notice how the HSMM-based algorithm returns
an estimated state sequence with larger diastole duration than
the true state sequence. This means that a poor initialization
of the HSMM-based algorithm, and in particular of the
sojourn time statistics, can lead to significant errors, due to
the lack of flexibility of this approach in modeling sojourn
times. On the other hand, the proposed CNN-solutions
identify almost perfectly the true state sequence of the noisy
heart sound signal reported in Fig. 4.

IV. CONCLUSION

In this paper, the use of deep convolutional neural net-
works for heart sound segmentation was proposed. In par-
ticular, a novel network architecture, which is inspired by
a network used for image segmentation, has been shown
to guarantee improved performance in recovering the exact
position of fundamental heart sounds in a phonocardiogram

heart sound datasets and a more thorough exploration of
different CNN architectures and their associated parameter
spaces. Moreover, more sophisticated post-processing pro-
cedures will be explored.
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