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Abstract—Recently, an innovative low-cost approach for the
construction of meteorological radars has been introduced by
exploiting the correlation between the received signals from two
fixed wide-beam antennas. Yet, it was then found that a very large
amount of signal samples would be required to ensure a satisfac-
tory performance of the proposed radar. On the other hand, it
was also envisaged that such a problem could be circumvented
by the use of more than two antennas. This work is a first step
in this direction, extending the original radar proposal from two
to an arbitrary number of antennas. In addition to designing an
optimum detector for the new radar, we assess its performance
by deriving asymptotic, closed-form expressions for the resulting
detection and false-alarm probabilities. As a term of comparison,
we also design and analyze a suboptimal detection scheme based
on the traditional phased-array approach. Numerical examples
are given to validate the provided analysis and to illustrate the
performance gain achieved from the use of additional antennas.

Index Terms—Correlation, meteorological radars, optimum
detection, stationary antennas.

I. INTRODUCTION

Radar applications have provided important advances in

different technological areas, such as remote sensing, mete-

orology, air traffic control, spatial monitoring, and national

security [1]–[3]. In particular, for meteorological applications,

three main types of radar exist, in terms of structure and

operation mode: (i) the large narrow-beam antenna; (ii) the

antenna array; and (iii) spaced antennas. In the first radar type,

a horn-shaped antenna and parabolic reflectors with circular

aperture are used. The azimuth scanning is obtained by rotat-

ing the antenna through a motor, and the elevation scanning is

obtained by changing the tilt in each rotation [4]. Because of

this, the scanning cycle is relatively long (circa 15–20 min).

In addition, this approach requires a very robust mechanical

equipment and high maintenance costs. In the second radar

type, an equivalent narrow beam is obtained by appropriately

controlling the relative phases and amplitudes of each radiating

element in the antenna array. Therefore, the beam position

can be adjusted electronically, rendering a minimum scanning

cycle, generally in the order of microseconds [5], [6]. On the

other hand, this approach has a high implementation cost due

to the use of a massive number of antenna elements. Finally,

the third radar type is a special employment of the second one.

In particular, only a few radiating elements of the antenna array

are activated to determine the position and the radial velocity

of the meteorological phenomenon of interest. Interferometric

techniques are then used to properly combine the amplitude

and phase information of the received signals [6], [7].
In [8], an innovative low-cost, fast-scanning approach with

potential use for nowcasting weather predictions was intro-

duced. The approach is based on two stationary (i.e., fixed)

wide-beam antennas. The central idea is to achieve narrow-

beam resolution by exploiting the signal correlation between

the two wide-beam antennas. Whenever there is a meteoro-

logical target in the intersection area between the resolution

cells of the two antennas, the received antenna signals are

expected to be mutually correlated. Otherwise, these signals

are expected to be independent. Therefore, the amount of cor-

relation between the antenna signals may serve as a basis for a

detection algorithm. The higher the correlation in the presence

of a target, the better the expected detection performance.

This correlation has been derived in [8] in terms of radar

parameters such as frequency bandwidth, baseline distance,

and antenna directivity. Related material on the correlation

between received radar signals can be found in [9], [10],

although for the different contexts of a single rotating, narrow-

beam antenna and polarization diversity, respectively (cf. [8]

for more discussion on this).
In [11], an optimum detector was provided for the two-

antenna radar scheme proposed in [8]. Also, analytical ex-

pressions were obtained for the corresponding probabilities of

detection (PD) and false alarm (PFA). However, it was then

observed that an extremely large amount of signal samples

would be required to render the radar performance acceptable,

and that such a problem could be alleviated by increasing the

number of antennas.
This work is a first step in that direction. In particular, we

generalize the radar scheme investigated in [8], [11] from two

to an arbitrary number of antennas, by deriving the optimum

detection algorithm and associated closed-form expressions

of PD and PFA1. Sample cases are presented to show the

detection improvement achieved with beyond two antennas.

For comparison, a suboptimal detection algorithm is also

considered, based on the traditional approach of phased arrays.

1The results presented herein have been used to assist in the design of
meteorological radar systems for Bradar Indústria S.A., a branch of Embraer
Defense and Security.
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Fig. 1. Top view of the investigated radar system.

This paper is organized as follows. Section II introduces

the architecture and the stochastic model of the radar setup;

Section III establishes the hypothesis test behind the radar

operation; Section IV provides the optimum and suboptimal

detection schemes for the proposed radar, as well as corre-

sponding expressions of PD and PFA; Section V discusses

some representative numerical results; and Section VI sum-

marizes the main conclusions.

In what follows, f(·)(·) denotes probability density function

(PDF); E{·}, expectation; VAR{·}, variance; det (·), determi-

nant; (·)T , transposition; and (·)−1
, matrix inversion.

II. RADAR MODEL

We consider a multi-static radar system composed of N
fixed wide-beam antennas. The antennas are aligned and

separated by a certain baseline distance B in the azimuth

direction, as shown in Fig. 1. A single antenna transmits a

linear frequency-modulated pulse, whereas all antennas receive

the echo signals. In addition, pulse compression is assumed at

the reception [12].

The ability of a radar system to resolve two targets over

range, azimuth, or elevation defines its resolution cell [2].

Fig. 1 shows a top view of the range-azimuth resolution cells

of each antenna, for a given range distance. The resolution

cells form an intersection (hatched) region, inside of which

the existence or absence of targets is to be determined.

Therefore, the angular span of the intersection region gives the

equivalent azimuthal resolution θres of the radar system. Note

that θres decreases as the number N of antennas increases. This

should be considered in practice for a proper radar design. In

meteorological applications, θres < 2o is typically required. As

for the range resolution δ, this is given by δ = c/(2Δf) from

the assumption of pulse compression, where c is the speed of

light and Δf is the bandwidth of the transmitted signal [2].

The signal received by each antenna is a sum of the

echoes coming from a large amount of scatterers within the

resolution cell. These scatterers represent the meteorological

phenomenon under observation (e.g., rain or clouds). Already

taking into account the presence of noise and clutter, the

signals received by the antennas can be written as

Sk,i = Xk,i + jYk,i (1)

where i ∈ {1, . . . , n} is a discrete-time index, n is the number

of samples observed in each antenna, Xk,i is the in-phase

component at the k-th antenna, and Yk,i is the associated

quadrature component, k ∈ {1, . . . , N}. As argued in [8], Xk,i

and Yl,i are mutually independent random processes, ∀(k, l).
In addition, assuming that the pulse repetition interval is much

larger than the coherence time associated with the random

motion of the scatterers, Sk,i is independent of Sl,m, ∀(k, l)
and ∀i �= m [13]. On the other hand, depending on the absence

or existence of a target in the intersection region among the

antennas’ resolution cells, Xk,i and Xl,i, as well as Yk,i and

Yl,i, ∀k �= l, can either be mutually independent or bear a

certain correlation coefficient ρkl, respectively. Finally, under

quite general conditions, Sk,i can be modeled as a circularly

symmetrical Gaussian random process, ∀k. Herein, for sim-

plicity, we also consider that Sk,i and Sl,m are identically

distributed, ∀(i, k, l,m).

The signal variance and the correlation coefficient ρkl for

an arbitrary pair of antennas have been fully characterized

in [8] as a function of the radar’s relevant physical parameters.

Hence, no further discussion on this topic shall be presented

here. Instead, our aim is to design and analyze an optimum

detector for the proposed extended radar setup, in terms of

arbitrary values of the variance and ρkl, k, l ∈ {1, . . . , N}.

This is attained in the next section.

III. HYPOTHESIS TEST

The fundamental problem of a radar system is to decide for
the absence or existence of a target. In our case, this problem
is posed over each intersection region among the antennas’
resolution cells, for multiple range combinations (cf. Fig. 1). In
so doing, the radar system scans the entire sector illuminated
by the antennas. For simplicity, the observables Ski defined
in (1) shall be denoted in compact form as

X � [X1,1, X2,1, . . . , XN,1, X1,2, X2,2, . . . , XN,2, . . . ,

X1,n, X2,n, . . . , XN,n]

Y � [Y1,1, Y2,1, . . . , YN,1, Y1,2, Y2,2, . . . , YN,2, . . . ,

Y1,n, Y2,n, . . . , YN,n] . (2)

We have the following binary hypothesis test:

• Hypothesis H0: target is absent. In this case, from the

radar model described in the previous section, X and Y
are formed by mutually independent Gaussian compo-

nents with zero mean and variance σ2
0 .

• Hypothesis H1: target is present. In this case, X is still

independent of Y , but now Xk,i and Xl,i (as well as

Yk,i and Yl,i) are jointly Gaussian random variables with

zero mean, variance σ2
1 , and correlation coefficient ρkl.

It is worth noting that σ2
1 > σ2

0 , since σ2
1 represents the

variance of noise plus target echo, whereas σ2
0 represents

the variance of noise alone.
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IV. DETECTION SCHEMES

A. Optimum Detection

The joint PDF of X and Y can be written as [14]

fXY (X,Y |Hν) =
1

((2π)N det (MHν ))
n

× exp

[
−1

2

n∑
i=1

(
Xi

TMHν

−1Xi + Y i
TMHν

−1Y i

)]
,

(3)

where ν ∈ {0, 1}, depending on the hypothesis, Xi �
[X1i X2i · · ·XNi]

T , and Y i � [Y1i Y2i · · ·YNi]
T . In addi-

tion, MH0
� σ2

0I and MH1
� σ2

1Σ are the covariance
matrices of Xi (as well as Y i) under each hypothesis, with I
being the identity matrix and

Σ �

⎡
⎢⎢⎢⎢⎣

1 ρ12 ρ13 . . . ρ1N
ρ21 1 ρ23 ρ2N
ρ31 ρ32 1 ρ3N

...
. . .

...
ρN1 ρN2 ρN3 . . . 1

⎤
⎥⎥⎥⎥⎦ . (4)

Note that MH0
and MH1

are N ×N symmetrical matrices.
1) Detection Design: In a binary hypothesis test, the opti-

mum decision (i.e., one that maximizes PD for any given PFA)
is established by the Neyman-Pearson Lemma [14]. According
to this, the system decides for H1 whenever the likelihood ratio
test (LRT) of H1 over H0 exceeds a certain threshold, say γ′,
and it decides for H0 otherwise. In other words,

Λopt �
fXY (X,Y |H1)

fXY (X,Y |H0)

H1

≷
H0

γ′. (5)

Substituting (3) into (5), and making the necessary simplifi-
cations, we obtain

Λopt =

(
det (MH0)

det (MH1)

)n

exp

[
−1

2

n∑
i=1

(
XT

i MXi + Y T
i MY i

)]
,

(6)

where M � M−1
H1

−M−1
H0

.

For simplicity, we use equivalently the so-called log-LRT
representation, given as [1]

ln [Λopt]
H1

≷
H0

ln
[
γ′] . (7)

Now, absorbing the terms that do not depend on Xi and
Y i into a new corresponding decision threshold, γ, we can
reformulate the decision rule as

W
H1

≷
H0

γ, (8)

where W is the new decision variable, obtained as

W � − 1

n

n∑
i=1

(
XT

i MXi + Y T
i MY i

)
. (9)

2) Detection Analysis: From the Central Limit Theorem,

W approaches a Gaussian distribution as the amount of signal

samples approaches infinity [14]. In what follows, we consider

that n is large enough to render the Gaussian assumption

a good approximation, thereby allowing for an asymptotic

performance analysis of the proposed radar system2. In this

case, W can be fully characterized by its mean value and

variance under each hypothesis, as calculated next.
For convenience, we obtain each element of Σ−1 in terms

of the correlation matrix Σ as [15]

Σ−1
(p,q) =

(−1)p+q det
(
Σ̃ [p, q]

)
det (Σ)

, (10)

with (·)(p,q) denoting the element at the p-th row and the q-th

column of a matrix, and Σ̃ [p, q] ∈ R
(N−1)×(N−1) being an

auxiliary matrix obtained by removing the p-th row and the

q-th column of Σ.
Now, using (4), (9), and (10), and applying the Laplace

Theorem [15], we eventually show that the mean values of W
under each hypothesis are given by

E{W |H0} = 2

(
N − σ2

0

σ2
1 det (Σ)

N∑
p=1

det
(
Σ̃ [p, p]

))
(11)

E{W |H1} = 2N

(
σ2
1

σ2
0

− 1

)
, (12)

and that the corresponding variances are given by (13)

and (14), displayed at the top of the next page, where sgn (·)
represents the sign function.

From (11)–(14), PFA and PD can be finally obtained with
use of the following general formulas for a Gaussian decision
variable along with a binary threshold detector [2]:

PFA =Q

(
γ − E{W |H0}√

VAR{W |H0}

)
(15)

PD =Q

(
γ − E{W |H1}√

VAR{W |H1}

)
, (16)

where Q(x) �
∫∞
x

(1/
√
2π) exp(−t2/2)dt is the complemen-

tary cumulative distribution function of a standard (zero mean,

unit variance) Gaussian random variable.

B. Phased-Array Detection
In this section, for comparison, we consider a suboptimal

detection scheme based on the operation mode of a traditional
phased array. In such a radar, each antenna element is assigned
a certain gain and a certain phase shift, with the resulting
antenna signals being added at the processing stage [6]. For
simplicity, and to render a fair comparison with the optimum
detector, here we assume a unity gain and a null phase shift
for all antenna elements. Like for the optimum detector, we
consider a collection of n signal samples for each of the N
antennas. Therefore, the received signals can be written as

S =

N∑
k=1

(
XSk

+ jYSk

)
, (17)

2As shall be seen from the numerical examples, the Gaussian assumption
proves to be very accurate for practicable values of n, say, 100–200 samples.
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VAR{W |H0} =
4σ4

0

n

⎛
⎜⎜⎝

N∑
p=1

⎛
⎝− 1

σ2
0

+
det

(
Σ̃ [p, p]

)
σ2
1 det (Σ)

⎞
⎠

2

+
1

σ4
1 det (Σ)

2

N−1∑
p=1

N∑
q=2

p<q

det
(
Σ̃ [p, q]

)2

⎞
⎟⎟⎠ (13)

VAR{W |H1} =
2σ4

1

n

⎛
⎜⎜⎝

N∑
p=1

N∑
q=1

p≤q

N∑
r=1

N∑
s=1

r≤s

(|sgn(p− q)|+ 1)

(
(−1)p+q det(Σ̃ [p, q])

σ2
1 det(Σ)

− I(p,q)
σ2
0

)

× (|sgn(r − s)|+ 1)

(
(−1)r+s det(Σ̃ [r, s])

σ2
1 det(Σ)

− I(r,s)
σ2
0

)(
Σ(p,r)Σ(q,s) +Σ(p,s)Σ(q,r)

))
. (14)

where XSk
� [Xk,1, Xk,2, · · · , Xk,n]

T and YSk
�

[Yk,1, Yk,2, · · · , Yk,n]
T . The PDF of S can be written as

fS (S|Hν) =
1(

2πNσ2
Hν

)n
× exp

⎡
⎣−

∑n
i=1

((∑N
k=1 Xk,i

)
2 +

(∑N
k=1 Yk,i

)
2
)

2Nσ2
Hν

⎤
⎦ , (18)

in which σ2
H0

= Nσ2
0 and σ2

H1
= σ2

11TΣ1 represent the

variance of the sum of N Gaussian components under the

hypotheses H0 and H1, respectively, 1 = [1, 1, · · · , 1]T ∈ N
N

being the unitary vector.
1) Detection Design: The LRT for the phased array detec-

tor is defined as

Λpha �
fS (S|H1)

fS (S|H0)

H1

≷
H0

γ′. (19)

Substituting (18) in (19), and after some minor simplifications,
we obtain

Λpha =

(
σ2
H0

σ2
H1

)
n exp

[(
σ2
H1

− σ2
H0

2σ2
H1

σ2
H0

)

×
n∑

i=1

((
N∑

k=1

Xk,i

)
2 +

(
N∑

k=1

Yk,i

)
2

)]
. (20)

After applying the log-LRT transformation, and since the

term
σ2
H1
−σ2

H0

2σ2
H1

σ2
H0

is always positive, we arrive at a new decision

rule in terms of Xk,i and Yk,i alone, namely

Z
H1

≷
H0

γ, (21)

where

Z �
n∑

i=1

((
N∑

k=1

Xk,i

)
2 +

(
N∑

k=1

Yk,i

)
2

)
. (22)

2) Detection Analysis: Note that Z/σ2
Hν

follows a chi-
squared distribution with 2n degrees of freedom. Therefore,
after a simple transformation of variables, we obtain the PDF
of Z under each hypothesis as

fZ (z|Hν) =

exp

[
− z

2σ2
Hν

](
z

2σ2
Hν

)
n

zΓ(n)
, (23)

Fig. 2. ROC curves for the optimum and phased-array detectors (ρ12 = 0.5,
N = 2, σ2

0 = 1, and σ2
1 = 1.1).

where Γ (·) represents the gamma function. Finally, PFA and
PD can be calculated as

PFA =

∫ ∞

γ

fZ (z|H0) dz =
Γ
(
n, γ

2Nσ2
0

)
Γ(n)

(24)

PD =

∫ ∞

γ

fZ (z|H1) dz =
Γ
(
n, γ

2σ2
11TΣ1

)
Γ(n)

, (25)

in which Γ (·, ·) represents the incomplete gamma function.

V. NUMERICAL RESULTS

In this section we present comparative numerical results in

terms of the amount of antennas (N ), the amount of signal

samples per antenna (n), and the correlation matrix (Σ). The

optimum and phased-array detectors we proposed are assessed

both analytically and via simulation. For illustration purposes,

we consider ρ12 = 0.05, ρ13 = 0.03, ρ14 = 0.01, ρ23 = 0.05,

ρ24 = 0.03, and ρ34 = 0.05.

Fig. 2 shows the receiver operating characteristic (ROC)

curves for both detectors, with N = 2, σ2
0 = 1, σ2

1 = 1.1, and

varying n. Note how the analytical expressions we derived

for the detection and false-alarm probabilities of the optimum

detector perfectly agree with the simulation results, confirming

the validity of the Gaussian assumption for the decision
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Fig. 3. ROC curves for the optimum and phased-array detectors (σ2
0 = 1,

σ2
1 = 1.2, n = 100, ρ12 = 0.05, ρ13 = 0.03, ρ14 = 0.01, ρ23 = 0.05,

ρ24 = 0.03, and ρ34 = 0.05).

Fig. 4. ROC curves for the optimum and phased-array detectors (n = 100,
N = 2, σ2

0 = 1, and σ2
1 = 1.1).

variable. Also note the improvement for both detectors as the

number of samples increases, and how the optimum detector

performs much better than the phased-array detector, yielding

a much higher PD for any given PFA. In particular, for

PFA = 10−10 and n = 120, the PD values are 98.1% for the

optimum detector and 78.1% for the phased-array detector.

Fig. 3 shows the ROC curves for the optimum detector with

two antennas proposed in [11] and the optimum detector with

three and four antennas proposed here, for n = 100, σ2
0 = 1,

and σ2
1 = 1.2. Once again, note how analytical expressions and

simulation results fully match each other, validating (15), (16),

(24), and (25). Also note how the optimum detector performs

much better with four antennas.

Finally, Fig. 4 shows the ROC curves for the optimum and

phased-array detectors with two antennas, σ2
0 = 1, σ2

1 = 1.1,

n = 100, and varying ρ12 = ρ. Note that, as discussed in

the Introduction, the performance of each detector improves

as the correlation coefficient increases.

VI. CONCLUSIONS

In [8] and [11], an innovative approach for the construction

of meteorological radars was introduced, based on two fixed

wide-beam antennas. In principle, the new approach is cheaper

and faster than the traditional one, which is based on a

large rotating narrow-beam antenna. However, the former

was observed to require an extremely high number of signal

samples in order to operate effectively. In this work, we

alleviated the referred drawback of this new meteorological

radar paradigm by extending it from two to an arbitrary

number of antennas. We not only designed the optimum and

phased-array detection algorithms for the extended radar setup,

but also analyzed their performances in terms of detection and

false-alarm probabilities. Our results indicate that the increase

in number of antennas brings a considerable performance gain.
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