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Abstract—In this paper, we address the problem of denoising
images degraded by Poisson noise. We propose a new patch-
based approach based on best linear prediction to estimate
the underlying clean image. A simplified prediction formula is
derived for Poisson observations, which requires the covariance
matrix of the underlying clean patch. We use the assumption that
similar patches in a neighborhood share the same covariance
matrix and we use off-the-shelf Poisson denoising methods in
order to obtain an initial estimate of these covariance matrices.
Our method can be seen as a post-processing step for other
Poisson denoising methods and the results show that it improves
upon them by relevant margins.

I. INTRODUCTION

Image denoising under Poissonian observations is an im-
portant problem, appearing in several application areas such as
astronomy and medical imaging, where photon-limited images
are very common.

In Poisson denoising, each pixel in the noisy image is
a realization of a Poisson random variable with expected
value equal to the true underlying pixel to be estimated.
Some Poisson image denoising methods apply a nonlinear
variance stabilization transform (VST), such as the Anscombe
transform [1], to the noisy image, in order to approximately
transform the noise into Gaussian-distributed. The resulting
image is then processed using a denoising method for Gaussian
noise; finally, an inverse of the transform is applied to the
output of the denoising method, in order to obtain the final
image estimate. Although some methods have been proposed
to improve the accuracy of this inverse transform [2], VST-
based methods are less accurate in regimes of low signal-
to-noise ratios (SNR), which has led to the development
of methods that directly tackle the Poissonian image. Two
recent examples of such denoising methods are Poisson non-
local means (PNLM) [3] and non-local PCA (NL-PCA) [4]
(more references to earlier work can be found in [3] and [4]).
Approaches that directly deal with the Poissonian nature of the
observations have also been proposed for image deconvolution
under Poisson noise (see [5], [6], and references therein).

The underlying assumption in many image restoration
methods is that the clean patches lie in a low dimensional
subspace. Whereas in the Gaussian noise case, this assump-
tion can be used efficiently [7], [8], in the Possionian case,
applying this assumption as a prior leads to an intractable
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optimization problem due to the non-quadratic log-likelihood.
To circumvent this difficulty, some methods, such as NL-
PCA and the sparsity-based method in [9], assume the patches
are represented as the exponential of some data lying in a
low-dimensional subspace. However, the exponential of low-
dimensional data is not guaranteed to be low-dimensional.
Recently, approaches based on sampling have been proposed
to directly approximate the minimum mean squared error
(MMSE) estimate [10]. Although these approaches are gener-
ally computationally complex for generic images, it has been
shown that it can be effectively applied in a class-specific
setting [11].

In this paper, we propose a new method based on the best
linear prediction (BLP) principle [12], in order to estimate the
clean patches as an affine transformation of the noisy ones.
This estimator is independent of the noise distribution and it
requires merely the covariance matrix of the underlying clean
vector. We assume that similar patches in a neighborhood
of a reference patch share the same covariance matrix. In
order to estimate this covariance matrix, we use an off-the-
shelf Poisson denoising algorithm. Thus, our method can be
seen as a post-processing step for Poisson denoising methods.
The experimental results reported in this paper show that our
method improves over state-of-the-art denoising methods by
relevant margins.

In the following sections, we first review the BLP principle;
then, the proposed method is described. Finally, experimental
results are reported and conclusions are drawn.

II. BEST LINEAR PREDICTION – BLP
In this paper, we use uppercase normal font to indicate

random vectors and uppercase bold font for deterministic
matrices. Consider that a random vector X ∈ Rn with
unknown probability density function is to be estimated from
an observed random vector Y ∈ Rm as an affine function
with the form

X̂ = BY + a, (1)

where B ∈ Rn×m and a ∈ Rn are a fixed matrix and
vector, respectively. Let µy and µx be the mean of the random
variables Y and X , respectively. Based on the BLP theorem
[12], the optimal choice for B and a in the MMSE sense is

B = ΣxyΣ
−1
yy , a = µx −ΣxyΣ

−1
yy µy (2)

where Σxy and Σyy are the cross-covariance matrix between
X and Y , and the covariance matrix of Y , respectively. A
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remarkable feature of BLP is that it is independent of the
distribution of the random variables involved, depending only
on the aforementioned matrices and mean vectors. In the
case of Gaussian noise, it can easily be shown that BLP
is equivalent to using a multivariate Gaussian prior with
covariance Σxx, which is often used in image denosing [8],
[13]; in that case, (2) is not only the best linear predictor, but
the best predictor overall in the MMSE sense [14].

In this paper, we propose to use BLP (1)–(2) in the case
where Y is a Poisson random vector with the underlying mean
X (E[Y |X] = X), that is, for m = n and

P(Y = y|X = x) =
n∏

j=1

e−xjx
yj

j

yj !
, (3)

where y ∈ Nn
0 and x ∈ Rm

+ . The main challenge in this
approach will be to obtain the aforementioned covariance
matrices and mean vectors, as discussed in the next section.

III. THE PROPOSED METHOD

A. BLP from Poisson Observations

The Poisson conditional distribution of Y in (3) has an
important implication in the cross-covariance matrix Σxy .
Recall that the cross-covariance matrix is given by

Σxy = EX,Y [XY
T ]− µxµ

T
y , (4)

where EX,Y indicates the expectation with respect to the joint
distribution of X and Y . Using the so-called law of iterated
expectation, the above can be written as

Σxy = EX

[
EY |X [XY T ]

]
− µxµ

T
y

= EX(XXT )− µxµ
T
x

= Σxx,

(5)

because µy = µx and EY |X [XY T ] = XEY |X [Y T ] = XXT .
In conclusion (as is also true for any zero-mean additive
independent noise), in the case of Poissonian observations
(which is not additive noise), we have that Σxy = Σxx.

A particular property of the Poisson distribution (namely
that its mean and variance are equal) underlies a simple
relationship between Σyy and Σxx. A similar relationship
exists in the case of additive independent zero-mean noise with
known covariance1, but for the Poisson model (3), no further
information is needed. Using iterated expectation again,

Σyy = EY (Y Y
T )− µyµ

T
y

= EX

[
EY |X [Y Y T ]

]
− µxµ

T
x .

(6)

Conditioned on X , the components of Y are independent, thus
the off-diagonal elements of EY |X [Y Y T ] are simply

(i 6= j) ⇒
(
EY |X [Y Y T ]

)
i,j

= E[Yi|X] E[Yj |X] = XiXj .

Concerning the diagonal elements,(
EY |X [Y Y T ]

)
i,i

= EY |X [Y 2
i ] = Xi +X2

i ,

1For example, for additive zero-mean white noise of known variance σ2,
we have the well-known relationship Σyy = Σxx + σ2I.

because the mean and variance of a Poisson random variable
are identical. Consequently,

EY |X [Y Y T ] = XXT + diag(X1, ..., Xn)

and

EX

[
EY |X [Y Y T ]

]
= EX [XXT ] + EX [diag(X1, ..., Xn)]

= Σxx + µxµ
T
x + diag(µx), (7)

where diag(µx) denotes a diagonal matrix with the compo-
nents of µx. Finally, plugging (7) into (6), yields

Σyy = Σxx + diag(µx), (8)

which is a natural result, since Poisson noise can be seen
as additive independent noise with variance equal to the
underlying clean value.

Finally, the BLP (1) of X from Poisson observations Y
modeled by (3) is given by

X̂ = µx + Σxx(diag(µx) + Σxx)
−1(Y − µy). (9)

B. Application to Patch-Based Poisson Denoising

As in classical patch-based methods, the image is divided
into overlapping

√
n×
√
n patches [3], [15], [16]. The patches

are denoised in collaboration with similar patches and then
returned to the original position in the image, with the multiple
estimates of each pixel (due to the overlapping nature of the
patches) averaged to reconstruct the final clean image estimate.
Denoting the (vectorized) i-th noisy patch as yi, we estimate
the corresponding clean patch xi by BLP, i.e., using (9),

x̂i = µx + Σxx(diag(µx) + Σxx)
−1(yi − µy). (10)

where µx and Σxx are estimated as describe in the next
paragraphs.

Some methods for Gaussian denoising use the same un-
derlying covariance matrix for similar patches in the image
[8], [13]. These approaches can all be seen as inspired by the
collaborative filtering idea pioneered in the famous BM3D
denoising method [16]. In this paper, we follow [8], by
assuming the same covariance matrix Σxx for patches that
are similar to a reference patch yr in a neighborhood thereof.

Estimating µx and Σxx from a set of clean patches would
simply amount to computing the sample mean and sample co-
variance. In the presence of additive zero-mean white Gaussian
noise of known variance σ2, it would still be possible to obtain
estimates µx and Σxx from noisy patches [17]. However, this
is not so simple in the case of Poissonian observations, because
the variance of each observation depends on the underlying
clean value, which is of course unknown. Here, we propose
to use an off-the-shelf Poisson denoising methods to obtain an
initial estimate of the clean image, from which µx and Σxx

can be estimated; these estimates are then plugged into (10)
to obtain the final patch estimator.
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C. Proposed Algorithm

Let y denote the whole Poisson noisy image. The first step
is to use an off-the-shelf Poisson denoising method to obtain a
so-called pilot estimate x̃. In the experiments reported below,
we will use NL-PC [4], VST+BM3D, and the recent state-of-
the-art method in [18].

The remaining steps of the algorithm follow closely the
macro structure of BM3D [16], [19]. Denoting a reference
patch of the pilot estimate as x̃r, this image is searched within
a window of size N × N , centered at x̃r, for the k-nearest
patches in Euclidean distance; let Xr denote the set of patches
thus obtained. From this set of patches, their sample mean and
sample covariance are obtained and denote as µx and Σxx.

Let Yr denote the set of patches in the noisy image at
the same locations as the patches in Xr. Using µx and Σxx

obtained as explained in the previous paragraph, all the patches
in Yr are denoised by BLP, according to (10). These denoised
patches are then returned to their locations, and averaged
wherever they overlap.

The algorithm may be repeated L times, using the obtained
denoised image as the next pilot estimate.

It is clear from the description that, rather than a full self-
contained denoising method, our algorithm can be seen as
a post-processing step for other Poisson denoising methods.
As shown below in the experiments, the proposed approach
improves over several state-of-the-art Poisson denoising algo-
rithms by a non-negligible margin.

IV. RESULTS

In this section, we evaluate the performance of our algo-
rithm using different methods to obtain the pilot estimate: NL-
PCA [4], VST+BM3D [2], and a recent state-of-the-art method
in [18]. The parameters used in the proposed method are as
follows. Reference patches are selected with step-size 4 along
both the row and the columns of the image. The patches have
size 8 × 8 and the search window is 40 × 40. The number
of selected similar patches to each reference patch is set to
k = 30. Finally, we use L = 2 iterations of the algorithm.

Table I, II, and III show the results of the proposed method
for some benchmark images, in comparison to the methods
used to obtain the corresponding pilot estimates. It can be
seen that, in all the examples, the BLP improves the pilot
methods for every tested images. The improvements often
exceed 0.5 dB. The average improvement of our method is also
noticeable. In these tables, mainly low SNR values, with peak
values from 1 to 10 are considered. Although the peak value
of 10 in images is sometimes not considered as a low SNR, it
is included to show the ability of our method to improve the
higher SNR’s even when VST methods are quite accurate in
these ranges.

Some examples of the proposed denoising methods using
different initialization are shown and compared to the corre-
sponding initialized images in Figures 1, 2, and 3. It can be
seen that the proposed technique is able to reduce some of
the artifacts produced by the underlying initialization method,
yielding visually more pleasing results.

(a)

(b) (c)

Fig. 1. Example of denoising results of a part of the image Cameraman (a)
Noisy image (Peak=5), (b) VST+BM3D (PSNR=23.14) (c) Proposed method
initialized by VST+BM3D (PSNR=23.51)

(a)

(b) (c)

Fig. 2. Example of denoising of a part of the image Barbara, (a) Noisy
image (Peak=15), (b) VST+BM3D (PSNR=26.29), (c) VST+BM3D+BLP
(PSNR=26.61)
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TABLE I
PSNR/ SSIM RESULTS OF THE PROPOSED METHOD IN COMPARISON WITH NLPCA [4]

peak=2 peak=5 peak=10
NLPCA NLPCA+BLP NLPCA NLPCA+BLP NLPCA NLPCA+BLP

Cameraman 20.84 / .9984 21.21 / .9986 20.69 / .9921 21.56 / .9941 20.82 / .9795 22.02 / .9861
House 22.64 / .9984 23.40 / .9987 23.42 / .9960 24.29 / .9965 23.97 / .9931 25.14 / .9948

Barbara 21.47 / .9986 21.80 / .9988 21.83 / .9954 22.19 / .9960 22.02 / .9885 22.52 / .9900
Lena 23.64 / .9988 24.30 / .9989 24.70 / .9968 25.35 / .9973 24.99 / .9935 25.81 / .9947

Average 22.14 / .9985 22.68 / .9987 22.66 / .9950 23.35 / .9959 22.95 / .9886 23.87 / .9914

TABLE II
PSNR/SSIM RESULTS OF THE PROPOSED METHOD IN COMPARISON WITH VST+BM3D [2]

peak=2 peak=5 peak=10
VST+BM3D VST+BM3D+BLP VST+BM3D VST+BM3D+BLP VST+BM3D VST+BM3D+BLP

Cameraman 22.04 / .9987 22.32 / .9989 24.40 / .9976 24.79 / .9979 26.09 / .9957 26.51 / .9959
House 24.04 / .9988 24.81 / .9990 26.86 / .9983 27.43 / .9986 28.63 / .9977 29.15 / .9979

Barbara 22.09 / .9988 22.36 / .9989 24.81 / .9977 25.19/ .9979 26.60 / .9960 27.02 / .9964
Lena 24.37 / .9990 24.99 / .9991 26.76 / .9983 27.33 / .9985 28.60 / .9973 29.08 / .9976

Average 23.13 / .9988 23.62 / .9990 25.70 / .9980 26.18 / .9982 27.48 / .9967 27.94 / .9970

TABLE III
PSNR/SSIM RESULTS OF THE PROPOSED METHOD IN COMPARISON WITH THE METHOD IN [18]

peak=1 peak=2 peak=5 peak=10
[18] [18]+BLP [18] [18]+BLP [18] [18]+BLP [18]+BLP [18]+BLP

Cameraman 21.17 / .9966 21.29 / .9966 22.34 / .9990 22.65 / .9991 24.53 / .9977 25.19 / .9982 26.38 / .9961 26.88 / .9966
House 23.56 / .9996 23.74 / .9997 24.74 / .9992 25.15 / .9993 26.78 / .9984 27.74 / .9988 28.76 / .9977 29.80 / .9982

Barbara 21.37 / .9996 21.56 / .9996 22.33 / .9990 22.51 / .9991 24.57 / .9977 25.12 / .9981 26.52 / .9960 27.31 / .9967
Lena 24.01 / .9997 24.32 / .9997 25.27 / .9992 25.77 / .9993 27.07 / .9983 28.01 / .9987 28.54 / .9974 29.59 / .9979

Average 22.53 / .9989 22.73 / .9989 23.67 / .9991 24.02/ .9992 25.73 / .9980 26.51 / .9985 27.55 / .9968 28.39 / .9974

(a)

(b) (c)

Fig. 3. Example of denoising results of the House image, (a) Noisy image
(peak=2), (b) NLPCA (PSNR=24.04), (c) NLPCA+BLP (PSNR=24.84)

V. CONCLUSION

In this paper, we have proposed a new approach based on
best linear prediction (BLP) for denoising images contami-
nated with Poisson noise. BLP is independent of the noise
distribution and we showed that, in the Poisson noise case,
the only required information is the mean and covariance
matrix of the underlying vector being estimated. To imple-
ment the BLP approach, our method relies on an off-the-
shelf Poisson denoising method in order to obtain a pilot
estimate, from which the required means and covariances are
estimated. Consequently, the proposed method can be seen
as a post-processing step for Poisson denoising methods. The
experiments reported show that our method is able to obtain a
noticable improvement over the denoised images obtained by
several state-of-the-art methods.
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