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Abstract—This paper demonstrates effective capabilities of a
relatively simple deep convolutional neural network in estimating
the Lyapunov exponent and detecting chaotic signals. A major
difference between this study and existing research is that our
networks take raw data as input, automatically generate a
selection of informative features, make a direct estimation of
the Lyapunov exponent and form a decision whether a chaotic
signal is present. The proposed method does not require attractor
reconstruction. It also can be used for processing relatively short
signals – in the experiment described here the signal length
is 1024 sequence elements. The study has demonstrated that
deep convolutional neural networks are effective in applications
involving chaotic signals (down to narrowband or broadband
stochastic processes), as well as distinct patterns, and can,
therefore, be used for a number of signal processing tasks.

Index Terms—deep convolutional neural networks, chaos iden-
tification, Lyapunov exponent, time series, logistic map

I. INTRODUCTION

A distinct type among signal varieties is called chaotic sig-

nals [1]. Fundamentally, these signals rely on dynamic chaos,

which is, essentially, a deterministic random phenomenon.

Chaotic signals are used in digital communications [2], radar

systems [3], by physicists studying real systems [4] or in med-

ical diagnostics [5], as well as other scientific and technical

fields.

One of the most common model classes used for generation

of discrete-time chaotic signals {sk}k∈K is discrete map, such

as:

sk+1 = f(sk, p), (1)

with properties:

s ∈ S ⊂ R
N , p ∈ P ⊂ R

L, f ∈ C0(S× P),

k ∈ K ⊆ Z, n ∈ 1, N, l ∈ 1, L,

where s – map state variable, p – vector of map parameters,

k – discrete time.

One of the primary problems in working with chaotic

signals is identification of chaotic oscillations [1], which is

predominantly solved by analyzing the Lyapunov exponent Λ
of the investigated system and/or process [6], [7]. This quantity

describes local exponential divergence of two close trajecto-

ries. It can also be interpreted in terms of the rate of loss of

information about the initial conditions during iterations (1).

In theoretical problems, Λ value is usually calculated based

on the signal model (1); in practical problems, Λ is often

estimated based on the observed realization of signal {sk}k∈K.

In cases with a known signal model (1) and known param-

eters of the signal generator, the Lyapunov exponent can be

calculated using the numbers in the matrix itself

Mk
ij =

[
G(sk−1)G(sk−2) . . .G(s0)

] 1
k

ij
,

Gij(sk) =
∂ fi
∂ s(j)

∣∣∣
s=sk

,

where G – Jacobian matrix of system (1). As a rule, in real-

life applications, different variations of the Benettin algorithm

are used in such cases [8]. In a unidimensional case N = 1,

the problem is reduce [7] and can be calculated directly:

Λ
(
s0
)
= lim

K→∞
1

K

K−1∑
k=0

ln
∣∣∣ d

d s
fk(s0)

∣∣∣. (2)

In cases where Λ is estimated by the observable realization

of signal, the first approach, chronologically, was proposed by

Wolf [9]. Numerous other approaches have been developed

since, including methods that use machine learning [10]. How-

ever, they are mostly centered around attractor reconstruction

(especially for N = 1 cases) [7], which is generally unstable

when the observed trajectories are short (approximately K <
104 sequence elements). Therefore, this problem remains open.

The field of digital signal processing has been recently

approaching such problems as filtering, estimation, recognition

of deterministic signals in noise using deep learning algo-

rithms [11], specifically – deep convolutional neural networks.

These networks are based on digital FIR filter banks that come

straight from digital signal processing. This approach has been

proven viable for processing signals that have clearly distinct

patterns (speech, images, etc.) [11]–[13]. Regarding chaotic

(noise-like) signals that are studied in this paper, there has been

no systematic investigation of convolutional neural network

effectiveness or decision-making process.

This study investigates the applicability of a deep neural

network for estimating the Lyapunov exponent by the observed

realization of signal {sk}k∈K in case N = 1.

II. TECHNIQUE AND THEORETICAL PREMISES

The approach to estimating parameter Λ of chaotic signals

rests on a set of theoretical premises.

First, it follows from the assumptions and conclusions of the

universal approximation theorem of Cybenko [14] that deep

convolutional neural networks (given their high generalization
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power [11]) can turn out to be an effective nonlinear approx-

imator of attractor properties that are relevant for estimating

the Lyapunov exponent [15].

Second, estimating the Lyapunov exponent from observed

realization of signal {sk}k∈K in case N = 1 relies heavily

on the Takens theorem of attractor reconstruction from its ob-

served projection [16]. The theorem lends solid mathematical

foundations to general ideas of nonlinear autoregression and

analyzing the structure of signal {sk}k∈K in time domain,

see the postulates of the method of singular spectrum analy-

sis [17].

Combining the two aforementioned aspects and applying

them to the properties of convolutional neural networks [18]

necessitates convolution of signal {sk}k∈K into delay ma-

trix S:

S =

⎡
⎢⎢⎣

s0 s1 · · · sNc−1

sNc sNc+1 · · · s2Nc−1

· · · · · · · · · · · ·
s(Nr−1)Nc s(Nr−1)Nc+1 · · · sNrNc−1

⎤
⎥⎥⎦ , (3)

where K = NrNc. Matrix S is, in turn, fed to the neural net-

work with 2D convolutional kernels. This architecture allows

for using compact kernels to estimate the {sk}k∈K structure

at significantly varying scales. The output layer is designed to

solve the regression problem to get an estimation of Λ.

III. EXPERIMENT

A. Methodology

The proposed approach to estimating the Lyapunov expo-

nent from signal realization was tested on time series generated

by logistic map:

sk+1 = f(sk, λ) = 4λ sk (1− sk), (4)

where: λ ∈ (0, 1] – control parameter, s ∈ (0, 1) – system

phase variable. Methodologically, the value of this oscillator is

that, given its relative simplicity, the structure of dynamics (4)

is surprisingly rich [7] beyond the limit doubling point of

period λ∞ = 0.892486418 . . .: chaotic regimes alternate with

cycles of different periods that then turn back into chaos; the

value of λ3c = 1/4 + 1/
√
2 is also identified, which corre-

sponds to tangential bifurcation point (saddle-node bifurcation

or transition into chaos through intermittency).

The transition into chaos occurs by the classical scenario of

period doubling. Besides, this oscillator has a practical value,

including its physical and technical realizations: electronic

circuit [19], quantum-optic [20], possible designs of encrypted

communication systems that operate on top of a chaotic

signal [2], [21], [22].

The signals generated by map (4) were used in interval

k ∈ [1, K] + 1 · 105. Such deviation from k = 1 is explained

by the need to minimize the spurious effect of transition

in order to form a stable attractor. The control parameter

ranged within λ ∈ [0.89, 1], step 1 · 10−4. For each λ value,

100 signal realizations were generated with different initial

conditions s0 = ξ, where ξ ∈ (0, 1) – non-correlated normally

distributed pseudorandom values. This neutralized the memory

effect induced by the initial conditions for the signals. All

signal sequences contained K = 1024 elements, since this

value is the average length in some of the most common real-

life problems [12], [13].

Non-overlapping sets of sequences {sk}k∈K were formed

to train and test the neural network estimator. Training was

carried out in value range λ ∈ [0.89, 0.94] (42 600 chaotic

and 7 500 non-chaotic realizations); testing range was λ ∈
(0.94, 1] (53 700 chaotic and 6 300 non-chaotic realizations).

Sequences {sk}k∈K were used to form matrices S with

shape 32× 32 that were fed to the neural network as input.

Deep optimization (using a genetic algorithm based on a

modified version of the differential evolution method [23])

allowed us to synthesize the deep convolutional neural network

structure, see Fig 1. The optimization helped minimize the

network size (number of parameters) and align its depth

(number of layers) with its width (layer sizes). The aim

of optimization was to attain the best quality classifier at

the lowest computational cost. Fig. 1 shows that the deep
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Conv: 10 filters, size 4x4,
stride 1x1, pad 0, act – ReLU

Pool: MAX, size 2x2,
stride 2x2, pad 0

S

1960 Features

Fig. 1. CNN estimator structure.

convolutional neural network has 3 hidden layers, where 2 are

convolutional and 1 is fully connected. Convolutional layers

contain pooling operations (MAX configuration) as well as

convolutions themselves. The activation function in all hidden

layers is ReLU.

Fig 2 shows the structure of the receptive field of the first

convolutional layer of the neural network estimator described

in section III-A.

The data suggest that, due to the size of the convolutional

filters 4× 4 and the special structure of S (3), the filters can

process four groups with four consecutive sequence elements

each and also form quite complex features within the time

scale of 1 to 100 sequence elements. Applying MAXPool

(size 2 × 2, stride 2 × 2) after the convolutional level results

in a feature structure that is sufficiently invariable to small

phase shifts in the original sequence {sk}k∈K [11]. The first

fully connected layer (32 neurons) takes 1960 features to form

meta-features that are combined into a Λ∗ estimation in the

output layer.
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Fig. 2. Structure of the receptive field (red) of the first convolutional layer.

When training, the regression problem was solved and the

loss function was minimized by MSE (mean squared error):

L = − 1

R

R∑
i=1

(
Λ∗
i − Λi

)2
, (5)

where R – training set size, Λi – value of the Lyapunov

exponent associated with the i-th signal in the training set.

To decrease overfitting, Dropout regularization [11] at 0.55

was applied after the pooling layer. The network was trained

for 300 epochs using rmsprop optimizer with adaptive step

size and control of the loss attribute. One mini-batch was

128 samples. All training was run with Keras Framework [24]

(build 2.1.2) on top of the Microsoft CNTK [25] (build 2.3.1).

B. Results

To estimate coherence of the classifier decisions, a network

uncertainty index was introduced (Λ∗ – CNN and Λ – for-

mula (2))

Φ∗ =
1

2
log

D
[
Λ∗]

s0

D
[
Λ
]
s0

, (6)

where: D – operator to calculate dispersion (the dispersion is

calculated from a set of initial conditions s0), log – decimal

logarithm. It follows from (6) that at Φ∗ > 0 the standard

deviation of estimation from a set of signals is higher than the

standard deviation of estimation calculated from (2), which

points to an uncertainty of the neural network about its

conclusions.

Fig. 3a shows median values (from the initial conditions

set s0) of Lyapunov exponent estimations: Λ – formula (2)

and Λ∗ – CNN. Fig. 3b shows values of the network uncer-

tainty index (6).

As reference [26] has demonstrated, within interval λ ∈
[0.89, 1] the attractor undergoes 5 structural rearrangements

that result in a qualitative increase in complexity of the

trajectory shape. With that, according to the experimental

conditions, the training set includes only one such bifurca-

tion λT5N = 0.919643377 . . . Although the proposed neural

network classifier produces on average a higher dispersion of

estimations (see Fig. 3b), when compared to a calculation from

formula (2), it still produces a Lyapunov exponent estimation

with an acceptable error and for attractors with markedly

changed structures (see Fig. 3a). MPE (mean percentage error)

b

train test

3c

b

a

Fig. 3. Dependence on parameter λ: (a) – of estimations Λ; (b) – of the
uncertainty index (6).

and MAPE (mean absolute percentage error) scores on the

test interval (for chaotic trajectories with Λ > 0) have the

following values:

% 5 25 50 75 95
MPE −21.75 −6.83 0.83 6.16 13.13
MAPE 0.61 3.12 6.39 10.81 45.00

(7)

It follows from (7) that 75% of decisions have an error of less

than 11% on the MAPE score.

The proposed neural network estimator for the Lyapunov

exponent can also be used for detection of chaotic signals:

cps = signΦ∗. (8)

In this case, value cps can be interpreted as decisions of a

binary classifier, where cps = 1 – meets the condition for

presence of a chaotic signal (Λ > 0), event positive, and

cps = −1 – no chaotic signal (Λ � 0), event negative. For

main parameters of the classifier quality, see Table I. Note

TABLE I
CLASSIFIER (8): CONFUSION MATRIX, TEST INTERVAL. LEGEND FOR

TABLE [27]: TS – CLASS REFERENCE LABELS; PR – CLASSIFIER

PREDICTIONS; PREC. – PRECISION METRICS; REC. – RECALL METRICS; F1
SC. – F1 SCORE.

Signal Ts
Prec. Rec. F1 sc.

class Λ � 0 Λ > 0

P
r Λ � 0 6 000 1 900 0.7595 0.9524 0.8451

Λ > 0 300 51 800 0.9942 0.9646 0.9792
Summary 6 300 53 700 0.8769 0.9585 0.9121

that in averaging of Precision, Recall and F1 score (summary

line) a pessimistic averaging strategy macro was used (not

accounting for class imbalance in the training and testing

sets, or prevalence of chaotic signals). Thus, F1 = 0.9121
represents adequate quality of classifier (8).

In addition to the quality of the synthesized classifier shown

in Table I, we look at the structure of its errors depending on λ
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values. To this end, two values were calculated:

Fch(λ) =

Ns∑
n=1

{
1 Λ∗

n(λ) � 0 ∧ Λn(λ) > 0,

0 otherwize.
;

Fch(λ) =

Ns∑
n=1

{
1 Λ∗

n(λ) > 0 ∧ Λn(λ) � 0,

0 otherwize.
;

where summation in the formulae is performed in the initial

conditions set. Consequentially, Fch corresponds to false-

negatives and Fch to false-positives as related to λ values.

The values are shown in Fig. 4.

b

a

chF

chF

Fig. 4. Structure of classifier errors depending on λ values.

Fig. 4 shows that classifier errors group into packages that

concentrate near certain values of the controlling parameter λ.

Analysis of package locations taken together with the data in

Fig. 3a indicates that the most common false-negative errors

occur in subduction windows [28] – a sudden narrowing of the

chaotic band – where oscillations change from non-chaotic to

chaotic, i.e., at Λ → +0.

IV. CONCLUSION

This study has demonstrated effective capabilities of a rela-

tively simple deep convolutional neural network in estimating

the Lyapunov exponent (the error rate in 75% of decisions is

less than 11% on the MAPE measure) and detecting chaotic

signals (F1 = 91.21%) generated by a logistic map. This is

true even through in the test interval of change of control

parameter λ ∈ (0.94, 1] the generator undergoes 4 structural

rearrangements of the attractor that result in a qualitative

increase in complexity of the trajectory shape [26].
Unlike a number of other estimation algorithms (e.g.,

see [10]), our solution does not require attractor reconstruction

(which is generally quite unstable) and operates on rather

short signals K = 1024 sequence elements in the experiment.

Moreover, the proposed solution works directly with raw data,

automatically synthesized informative features, makes a direct

estimation of the Lyapunov exponent Λ and flags the present

chaotic signals. Note also that the pre-trained neural network

makes estimate Λ in a non-iterative way. The network itself is

quite compact in size, see Fig. 1, and contains multiplication

and addition operations. The computational power it uses is

therefore adequately low.

Structural analysis of the synthesized and trained convo-

lutional network and its possible functional mechanism, as

applied to the problem at hand, has shown that creating an

input signal in the form of delay matrix (3) and the size of

2D convolutional filters in the first hidden layer are rather

critical and affect the quality of the final decision. In this

context, two issues draw certain attention: (i) – why is this

specific network structure (see Fig. 1) happens to be the most

effective for this application; (ii) – how much will the network

structure need to change to maintain its effectiveness in case

of change in the chaos structure and/or signal length. We will

address these and other issues in future studies.

This leads us to conclude tentatively that a certain class

of problems in digital processing of chaotic signals can

be adequately solved by deep learning [11] with automatic

generation of informative features and key decision-making

rules. This study has also shown that deep neural networks

are effective in applications involving noise-like signals (down

to narrowband or broadband stochastic processes), as well as

distinct patterns in signals [11]–[13].

The authors thank the anonymous referees for their useful

comments.
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