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Abstract—This paper deals with the problem of sparse beam-
forming for interference mitigation in milimiter wave (mmWave)
frequency bands. Multiantenna solutions in mmWave are gen-
erally implemented with phase shifters which are known to
have good interference rejection capabilities. However, phase
shifters are power-demanding components and, depending on
their resolution, they require bulky hardware solutions able to
accommodate the control lines. On the other hand, the use of
switches leads to a cost-efficient alternative able to provide a suf-
ficiently large interference rejection while substantially reducing
the hardware cost and power consumption. This work proposes a
beamforming scheme able to maximize the signal-to-interference-
plus-noise ratio (SINR) assuming that the beamforming weights
can only take 0 and 1 values. The resulting optimization problem
is a binary quadratic fractional problem which is a difficult
non-convex problem. Two optimization approaches are proposed;
namely, the semidefinite relaxation and the penalized convex-
concave procedure. We show that both techniques behave well
in the considered scenarios and their performance is close to the
optimization problem upper bound value.

I. INTRODUCTION

A more aggressive frequency reuse among different wire-
less communication players is not only fostered in sub-6
GHz frequency bands but also in milliliter wave (mmWave)
deployments [1]. This is the case of the Ka band which is
being investigated by academia and industry for its shared use
by satellite and terrestrial services [2].

Bearing this in mind, multiantenna transceivers will be
mandatory for reducing the excess of interference from ad-
jacent mmWave transmissions. This is investigated in [3] and
[4], assuming an hybrid digital-analog multiantenna solution
with phase shifters. Despite the potential of this hardware
architecture for delivering large data rates in a cost-effective
fashion, alternatives are being proposed [5].

In particular, the use of switches instead of phase shifters
can provide a substantial cost reduction. Indeed, even if low
resolution phase shifters are adopted, their costs can constitute
a large percentage of the overall multiantenna solution. In ad-
dition, its power consumption is large and it might involve the
construction of ad-hoc power dissipation units. Furthermore,
the control lines required to adjust the phase values generally
lead to bulky antenna array solutions.

The aim of this paper is to investigate the use of switches
in mmWave spectrum sharing scenarios. Instead of directly
considering the hybrid analog-digital solution, we target the
pure analog solution constructed by a set of N switches with
a single radiofrequency chain.
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We focus on the maximization of the attainable data rates of
the receive beamforming case, which leads to the maximization
of the signal-to-interference-plus-noise ratio (SINR). The con-
sidered optimization problem is a fractional quadratic problem
with non-convex quadratic constraints. In order to solve the
problem, we first perform a transformation and, posteriorly,
we consider two convex relaxation techniques.

On one hand, we consider the semidefinite relaxation
(SDR) [6] followed by a Gaussian randomization. Remarkably,
we can easily obtain feasible solutions based on the Gaussian
randomization due to the nature of the problem (i.e. binary).
On the other hand, we consider the penalized convex-concave
procedure (PCCP) [7], [8], which iteratively solves a relaxed
convex version of the original problem. This method has been
successfully employed for the transmit hybrid analog-digital
beamforming case in [9], [10]. The numerical results show
that both techniques present a performance close to the SDR
upper bound. Concretely, PCCP approach behaves closer to
maximum attainable SINR value compared to the SDR and
Gaussian randomization yet preserving a low computational
complexity.

The outline of the paper is as follows. Section II describes
the system model and the optimization problem to be solved.
Section III introduces the two considered approaches to tackle
the optimization problem. Section IV presents the numerical
results and Section V concludes.

Notation: Throughout this paper, the following notations
are adopted. Boldface upper-case letters denote matrices and
boldface lower-case letters refer to column vectors. ()%, ()T,
(.)* denote a Hermitian transpose, transpose and conjugate
matrices, respectively. Iy builds N x N identity matrix and
0 g « v refers to an all-zero matrix of size K x N. If X isa [NV x
N matrix. [X], represents the (i-th, j-th) element of matrix
X. ®, o and ||.|| refer to the Kronecker product, the Hadamard
product and the Frobenius norm, respectively. Vector 1 is a
column vector with dimension N whose entries are equal to
1. vec () denotes the vectorization operator.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider a transmission of the single antenna trans-
mitter and a receiver equipped with N antennas in presence
of an interference transmitter equipped with a single antenna.
The receive signal can be modeled as

y:wT(\/IShs+g+z>, H
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where w € RV*1 is the receive beamformer, P is the transmit
power, h € CN*1 is the channel vector of the intended
transmitter, s is the unit norm zero-mean Gaussian transmitted
symbol, g € CN*1 is the channel vector of the interference
source and z is the zero-mean Gaussian additive noise with

variance 2.

Let us consider the narrowband mmWave channel model
presented in [11], which can be modelled as follows

C L
1 g
h="% DD aaans (07) aws (057) )

c=1 =1

where L denote the number of sub-paths and C' the number of
clusters. The value «; is a small scale fading term of the [-th
sub-path at the c-th cluster for ¢ > 1 and [ > 1. Vector a,,(-) is
the antenna array responses of the receiver respectively. The
function a;, represents the antenna gain of the transmitter.
The transmit and receive antenna array responses depend on
both the angles of departure (AoD), %7, and angles of arrival
(AoA), 077, respectively. Note that when C' = L = 1, the
transmission is a pure line-of-sight.

The steering vector a depends on the antenna array struc-
ture and the element spacing. In the following, we consider
an uniform linear array (ULA) whose steering vector can be
written as

1
ayra(f) = Wisi

(Lej%ﬂdsin(e)’ 3 -7ej27"(N—1)dsin(0)) 3

where d the element spacing and A the wavelength. We assume
that the interference channel vector, g has the same distribution
as the intended user channel vector h.

The attainable data rates are described by
R =log, (1 + SINR), 4

where
|hHW ‘ 2

SINR = .
8P wl]? + o?|w|?

®)

Bearing this in mind, maximizing the data rate is equivalent
to the maximization of (5). In this paper, we focus on the case
where the entries of w can only take O or 1 values. As a result,
the considered optimization problem becomes

maximize SINR
subject to (6)
[w]; € {0,1} i=1,...,N.

The optimization problem in (6) is fractional quadratic with
non-convex quadratic constraints optimization problem. In the
next Section we describe how to obtain efficient solutions of
this problem.

III. SPARSE BEAMFORMING OPTIMIZATION

The optimization problem in (6) can be written as

where
H = hh?, 8)

G =gg’ + 0L )

Moreover, E; is a zero matrix whose ¢-th diagonal element is
equal to 1 and e; is a zero vector whose ¢-th entry is equal to
1. The optimization problem in (7) is non-convex due to both
the objective function and the quadratical equality constraint.

We can re-write this optimization problem by using the
Charnes-Cooper transmformation such that

maximize v Hv

vt
subject to

VTEiV—te;rV:O i=1,...,N, 10)
viGv =1,

t >0,

where we have considered

t= ——, 11
vVwTGw b
v = tw. (12)

The optimal solution of (10) is related to the one from (7) so
that

v
* = 13
w ; (13)

Let us define
v = [VT,t}T. (14)

With this, we can re-write the optimization problem in (10) so
that

maximize u’Hu
u

subject to
uJju=0 i=1,...,N, (15)
u'Gu=1,
[U]N+1 > 0,
where
H = block-diag {H, 0} , (16)
G = block-diag {G, 0}, (17)
and
Ei —0.582‘
Ji= (0.5e? 0 > ' (1%

w! Hw . N . .
maximize A We now consider the optimization problem in (15) which
w wiGw (7 is non-convex quadratically constraint quadratic program
subject to (QCQP). Two methods for obtaining efficient solutions of (15)
wlE;w — efw =0 i=1,...,N, and; thus, from (6) are presented in the following subsections.
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A. SDR and Gaussian Randomization
The SDR of (15) can be written as
maximize Tr {ﬁU}
U

subject to
Tr{J;U} =0 i=1,...,N, (19)
Tr {GU) = 1.

[U]N+1,N+1 >0

Considering the optimal solution of (22), U*, we state that the
maximum SINR value that the proposed sparse array solution
can attain is

Tr {ﬁU* }

Tr {GU*} '
This maximum performance of the original optimization prob-
lem in (7) and it is attainable whenever U* is rank one.
Otherwise, the Gaussian randomization method can attain
values close to this upper-bound [6]. For this particular SDR

problem, we propose the following Gaussian randomization
method.

SINRupper bound = (20)

We first compute a set of M x € RNT!X! Gaussian
random variables with zero mean and covariance matrix U*.
In all realizations, we perform the following operation

X1.
d= 2N 1)
X]n41

where x;. denotes a vector containing the IV first entries of
x . All the normalized realizations {d,,}}_, are rounded to
values between 0 and 1. This is, if an entry [d,,]; > 0.5 it is
set to 1 and zero otherwise.

Among all rounded and normalized vectors, we select the
one that attains the maximum SINR described in (5).

B. Penalized Convex-Concave Procedure (PCCP)
We can re-write the optimization problem in (15) as follows

minimize — u’ Hu
u

subject to
WIMa+ w3 u<o i=1,...,N,
—uTJ£+)u—uTJ57)u§0 i1=1,...,N, (22)
u'Gu < 1,
—u'Gu <1,
[y >0

where J EH and J 'Ei) are two matrices collecting the eigen-

vectors associated to the positive and negative eigenvalues of
J; respectively.

The PCCP method [7] approximates the concave parts of
the problem by its first Taylor approximation and iteratively
solves the equivalent problem. In addition, in all approximated
constraints, a slack variable is added to foster the finding of a
feasible point [7].

Considering an arbitrary iteration n, the PCCP version of
the optimization problem in (22) can be written as in (23)
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where s,, m = 1,...,2N + 1 are the slack variables and
[ is a regularization factor that controls the feasibility of the
constraints. For high values of 3, the optimization focuses on
yielding to a feasible point of (22). On the other hand, for
low values of 3, the optimization problem targets to maximize
the array gain towards the intended user. This regularization
factor can be updated over the iterations. For our case, we
consider a multiplicative update by a factor p > 1. Note
that the optimization problem in (23) is a second order cone
program (SOCP) which can be efficiently solved via interior
point methods.

The optimization algorithm is summarized in Algorithm 1.

Data: z(¥ and 5(©

Result: p*
while an{\gﬂ $m < ¥ and |[u™ —uV|| > w do

if ¢t < T, then

Compute u™ according to (23).;
Z("+1) P u(”);

ﬂ(n+1) < max (/B(R)P, /Bmax);
t+—n+1;

else

t <« 0;

Initialize with a new random value z(®);
Set up 3(°) again;

end

end

Output the final solution;
Algorithm 1: PCCP optimization for sparse beamforming
optimization.

As it can be observed, the proposed algorithm includes the

. .. 2N+1 . ..
stopping criteria » . " s,, < 1. This condition guarantees
that all the constraints of the original problem (22) are not
violated for a sufficiently low ). Note that, it is possible
to allow different maximum violations of each constraint by

. . . 2N+1
weighting the penalty function ) > """ s,,.

The role of 3 is to balance the optimization of the array
gain to the intended users and the minimization of the con-
straint violation (i.e. for very high 3 the optimization problem
seeks for a feasible point rather than optimizing the array
gain). We variate the value of § over the different iterations.
First, we set a relatively low value of B(O) and; posteriorly, we
sequentially increase this value. In other words, the proposed
scheme first focuses on maximizing the array gain to the
intended user and, later, it seeks for a feasible solution. To
avoid [ taking a very large value when the number of iterations
becomes large, leading to numerical difficulties, we consider
a maximum [ value Bpax.

Algorithm 1 is not a descent algorithm [7]. With the aim
of fostering the convergence, a maximum number of iterations
Thmax 1S imposed and, in case it is reached, we start with a new
random initial point.

IV. NUMERICAL RESULTS

We now proceed with the numerical evaluation of the
mentioned beamforming techniques. We first describe the
channel model paramaters considering a backhaul scenario
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2N+1

ﬂiilgll\lzfl 27?,{ } 5(”) Z Sm
subject to
uTJ,(.‘H QR{ ”)J( ) } §zT’(”)J§_)z+si i=1,...,N,

u?3 - 272{ T gy } <" M3Pg sy i=1,...,N, (23)
u'Gu<1,

— 2R {ZT (")éu} <1+2z"MGz + sy,
[uy41 >0

Sm >0 m=1,...,2N +1,

described in [12]. The amplitude variations are modeled so
that _
Qe = Aclewcua (24)

where A.; is Rayleigh distributed with mean 0.1 and ) is
uniformly distributed from 0 to 27. We assume that 0% 7% are
deterministic and they can be computed by known the relative
positions between the transmitter and the receiver. Otherwise,
for ¢ > 1 and [ > 1, we assume that

0L = 615 + X', (25)
or =017 + X", (26)

where x!* and " are zero mean Gaussian distributed random
variables with standard deviation equal to 5. All the simulation
results have been obtained over 500 Monte Carlo runs.

We first identify the potential of the use of sparse arrays
in mmWave spectrum sharing systems. With this aim, we
compute the upper bound performance (i.e. solution of the
optimization problem in (22)) and the performance of a pure
digital beamforming solution. For the latter case, the optimal
design is known to be

Ugigial = G~ 'h. (27
Figure 1 and 2 depict these results for N = 20,40,60 and
80 antennas and for different P values assuming o2 = 1.

In all cases it can be observed that the sparse array solution
loses between 3 and 4 dBs of SINR with respect to the ideal
fully-digital beamforming alternative. This indicates the huge
potential of sparse arrays in spectrum sharing scenarios.

For instance, it can be noted that the solution with N = 40
switches presents a slightly better SINR values with respect to
the case of a fully digital solution with N = 20. Performing
a cost and power consumption comparison of the different
alternatives is out of the scope of the current paper and it
is left for further works. Finally, it is important to remark that
in all cases the variation of P minimally impact the resulting
SINR.

The propose techniques evaluation are presented in Figure
3 for N = 20,60 and 80 and P = 0 dBW. For the PCCP
method, the following parameters have been used

ﬂ(o) = 001,{? = 2-5,ﬂmax == 1097 (28)
Y =w=10"5. (29)
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Fig. 1. Digital beamforming versus sparse antenna array for N = 20 and
40.
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Fig. 2. Digital beamforming versus sparse antenna array for N = 60 and
80.

Moreover, as initial point z(?) we have used a random vector
from a Gaussian distribution with zero mean and uncorrelated
entries.

In all cases it can be observed that PCCP yields to a

1534



2018 26th European Signal Processing Conference (EUSIPCO)

performance higher to the SDR and Gaussian randomization.
In this latter technique we have assumed a number of M = 103
randomizations.

20

I G aussian Randomization
[IPenalized convex-concave
I SDP upper-bound

Fig. 3. Performance results for N = 20,60 and 80.

For the different number of antennas employed we observe
that the difference between the PCCP method and its perfor-
mance upper bound is approximately 4 dB in all cases.

V. CONCLUSIONS

This paper has explored the use of switches instead of
phase shifters in spectrum sharing mmWave systems. This
was motivated by the fact that the use of switches offers
a large reduction of the cost and power consumption of
the multiantenna solution. The resulting optimization problem
results in a non-convex fractional quadratic problem with was
efficiently soled via two alternatives. The SDR followed by a
Gaussian randomization shows a lower performance compared
to the PCCP technique which behaves close to the SDR upper
bound. In any case, the comparison of sparse beamforming
compared to the pure digital alternative, suggests a huge
potential of this hardware implementation in next generation
mmWave deployments.

ACKNOWLEDGMENT

This work has received funding from the Spanish Min-
istry of Economy and Competitiveness (Ministerio de Econo-
mia y Competitividad) under project TEC2017-90093-C3-1-
R (TERESA) and from the Catalan Government (2017-SGR-
1479 and 2017-SGR-0891).

REFERENCES

[1] H. Shokri-Ghadikolaei, F. Boccardi, C. Fischione, G. Fodor, and
M. Zorzi, “Spectrum Sharing in mmWave Cellular Networks via Cell
Association, Coordination, and Beamforming,” IEEE Journal on Se-
lected Areas in Communications, vol. 34, no. 11, pp. 2902-2917, Nov
2016.

[2] X. Artiga, M. . Vzquez, A. Prez-Neira, C. Tsinos, E. Lagunas,
S. Chatzinotas, V. Ramireddy, C. Steinmetz, R. Zetik, K. Ntougias,
D. Ntaikos, and C. B. Papadias, “Spectrum sharing in hybrid terrestrial-
satellite backhaul networks in the Ka band,” in 2017 European Con-
ference on Networks and Communications (EuCNC), June 2017, pp.
1-5.

ISBN 978-90-827970-1-5 © EURASIP 2018

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

1535

C. G. Tsinos, S. Maleki, S. Chatzinotas, and B. Ottersten, “Hybrid
analog-digital transceiver designs for cognitive radio millimiter wave
systems,” in 2016 50th Asilomar Conference on Signals, Systems and
Computers, Nov 2016, pp. 1785-1789.

M. A. Vazquez, L. Blanco, X. Artiga, and A. Perez-Neira, “Hybrid
analog-digital transmit beamforming for spectrum sharing satellite-
terrestrial systems,” in 2016 IEEE 17th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), July
2016, pp. 1-5.

R. Mndez-Rial, C. Rusu, N. Gonzlez-Prelcic, A. Alkhateeb, and R. W.
Heath, “Hybrid MIMO Architectures for Millimeter Wave Communica-
tions: Phase Shifters or Switches?” IEEE Access, vol. 4, pp. 247-267,
2016.

Z. q. Luo, W. k. Ma, A. M. c. So, Y. Ye, and S. Zhang, “Semidefinite
Relaxation of Quadratic Optimization Problems,” IEEE Signal Process-
ing Magazine, vol. 27, no. 3, pp. 20-34, May 2010.

T. Lipp and S. Boyd, “Variations and extension of the convex—
concave procedure,” Optimization and Engineering, vol. 17, no. 2,
pp. 263-287, 2016. [Online]. Available: http://dx.doi.org/10.1007/
s11081-015-9294-x

O. Mehanna, K. Huang, B. Gopalakrishnan, A. Konar, and N. D.
Sidiropoulos, “Feasible Point Pursuit and Successive Approximation of
Non-Convex QCQPs,” IEEE Signal Processing Letters, vol. 22, no. 7,
pp- 804-808, July 2015.

M. A. Vazquez, L. Blanco, and A. I. Perez-Neira, “Hybrid Analog-
Digital Transmit Beamforming for Spectrum Sharing Backhaul Net-
works,” IEEE Transactions on Signal Processing, vol. PP, no. 99, pp.
1-1, 2018.

M. A. VAzquez, A. Perez-Neira, R. Corvaja, A. G. Armada, and
M. . Lagunas, “Scheduling and precoding in hybrid analog-digital
multiantenna spectrum sharing systems,” in 2017 25th European Signal
Processing Conference (EUSIPCO), Aug 2017, pp. 1709-1713.

M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S.
Rappaport, and E. Erkip, “Millimeter Wave Channel Modeling and
Cellular Capacity Evaluation,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 6, pp. 1164-1179, June 2014.

A. Maltsev and et al, “D5.1 - Channel Modeling and Characterization,”
MiWEBA Project (FP7-ICT-608637), Public Deliverable, Jan. 2014.



