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Abstract—Permutation Entropy has been used as a robust
and fast approach to calculate complexity of time series. There
have been extensive studies on the properties and behavior of
Permutation Entropy on known signals. Similarly, Multiscale
Permutation Entropy has been used to analyze the structures
at different time scales. Nevertheless, the Permutation Entropy
is constrained by signal length, a problem which is accentuated
with Multiscaling. We have analyzed the fractional Gaussian
noise under a Multiscale Permutation Entropy analysis, taking
into account the effect of finite-length signals across all scales.
We found the Permutation Entropy value of Fractional Gaussian
noise to be invariant to time scale. Nonetheless, a finite-length
linear approximation for scale dependency is found as a result
solely from the finite-length constrains of the method.

Index terms— Multiscale Permutation Entropy, Fractional
Brownian Motion, Fractional Gaussian Noise, Finite-Length
Time Series

I. INTRODUCTION

Entropy measurements have helped researchers explore the
degree of complexity on data series in a wide range of fields.
Particularly in the context of biomedical signals, Goldberger
proposed that pathologies and aging can be distinguished by
measuring physiological complexity [1]. These propositions
has been applied to distinguish Alzheimer states [2], classify
signals from Parkinson’s disease patients [3], among many
other applications.

Since the original proposition by Shannon [4], many differ-
ent definitions for Entropy measures have been proposed for
this purpose. In particular, the Permutation Entropy (PE) [5]
has been used because of its robustness to noise and simple
implementation. Also, to capture complexities at different time
scales, and distinguish randomness from complexity, Costa [6]
proposed a Multiscale Entropy concept. Since any Entropy
measurement is compatible with the multiscale approach, Aziz
and Arif [7] introduced the Multiscale Permutation Entropy
(MPE), which extends the properties of PE across different
scales.
There have been significant efforts to understand the un-
derlying behavior of the Permutation Entropy under known
structures, most notably by Bandt and Shiha [8] and Zunino
[9] using fractional Brownian motion and fractional Gaussian
noise. Nonetheless, the PE’s behavior of these processes has
not been analyzed under the scope of multiscaling. There is
previous work in this regard, where Little [10] analyzed the
approximate behavior of white noise under PE finite-length
constrains.

One of the limitations of PE is the requirement of a sufficiently
large number of data points to yield an accurate result. There
several proposed ideas to mitigate this limitation [11]. Never-
theless, since the multiscaling process reduces the amount of
available data, the treatment of short signals is an unavoidable
problem.
Hence, the purpose of this document is to study the de-
pendency of time scale with a random signal with build-in
correlations, by studying the Multiscale Permutation Entropy
on fractional Gaussian noise. We expect to capture the added
complexity of long-range correlation with the time scale.
Also, we will address the problem of data length, which is
accentuated for high scales, to quantify its added effect in
practical measurements.
The article is organized as follows: Section II describes the
theoretical background of Permutation Entropy, Multiscale
Permutation Entropy, and fractional Gaussian noise. Section
III explores the PE of fractional Gaussian noise in the context
of multiscaling, and the scale dependency introduced by the
coarse-graining procedure. Section IV and conclusions discuss
the results and the implications of the previous analysis.

II. THEORETHICAL BASIS

In this section, we review the key concepts of Permutation
Entropy, Multiscale Permutation Entropy and fractional Gaus-
sian noise, which are necessary for our propositions.

A. Permutation Entropy
Bandt and Pompe [5] proposed an ordinal-based method to

measure the entropy of a signal. Given an arbitrary time series
with weak stationary assumption, an embedding dimension d
is selected. For each possible segment of size d, a particular
order (pattern) is obtained. In general, d! different patterns are
possible. For d = 2, only two possible patterns exist; xn <
xn+1 or xn > xn+1, therefore labelled as π12 and π21. For
d = 3, six different patterns are possible (ex. π123). The cases
where xn = xn+1 are excluded, since real data applications
have at least a minimum amount of noise, and this case will
not occur almost surely.
Given an time series xn, where n = 1, . . . , N (being N the
size of the series), we compute the relative frequency for the
d! possible patterns π,

p̂(π) =
]{n|n ≤ N − (d− 1)λ, (xn+1, . . . , xn+d) type π}

N − (d− 1)λ
(1)
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where λ is a downsampling parameter, and the empirical
probability of observing pattern π is defined as p̂(π). For
our purposes λ = 1, (see section II-B). Given this empirical
probability distribution, the PE is then defined as,

Ĥ =
−1

ln(d!)

d!∑
i=1

p̂(πi) ln p̂(πi) (2)

The maximum entropy is obtained when all patterns have the
exact same probability (i.e. the mass probability function is
uniform).
Note that the PE is just the widely known Shannon Entropy,
using the relative frequencies for all the patterns present in
the time series xn. The PE is robust, simple to implement,
and invariant with respect to nonlinear monotonous transfor-
mations [9]. Since the method only works with the ordinal
patterns of the series, it does not need further assumptions
over the distribution of the signal. For the feasibility of the
method, sufficiently long data series are needed, with the
general condition that N � d!.

B. Multiscale Coarse-grain procedure

Costa and Goldberg [6] introduced the concept of coarse-
graining procedure to Entropy measurements to analyze the
behavior of a time series at different time scales, thus defining
the Multiscale Entropy (MSE). For a deterministic signal, the
associated information Entropy will be low, and will approach
its maximum value with random noise. However, pure
uncorrelated noise is simple to characterize. Therefore, high
Entropy implies randomness but not necessarily complexity
[6]. For higher time scales, random noise tends to cancel out,
and thus, gives a low Entropy measurement, where complex
signals maintain high Entropy.
For a one-dimensional process, a coarse-grained time series
of scale m is computed. Given a time series {x1, . . . , xN},

x
(m)
j =

1

m

jm∑
i=m(j−1)+1

xi (3)

for 1 ≤ j ≤ N/m. By doing this, each new element of the
coarse-grained signal x(m) is the average of a non-overlapping
segment (size m) of the original signal. Costa and Goldberg [6]
then proceed to calculate the Sample Entropy on the coarse-
grained time series for different scales.
Any Entropy measurement can be implemented with the mul-
tiscale approach, including the PE. Aziz and Arif [7] proposed
the MPE, using the definition of PE in Section II-A to build
the pattern distribution for different time scales. This approach
preserves the ordinal advantages given by the PE, while taking
in account the information discarded with the downsampling
at λ > 1. The same length concern remains, and the coarse-
graining scale must satisfy the condition N/m� d!.

C. Fractional Gaussian Noise

Fractional Brownian motion (fBm) and fractional Gaussian
noise (fGn) were originally proposed by Mandelbrot and Van
Ness [12] as a generalization of the Gaussian random walk

phenomenon, where different measurements of autocorrelation
are introduced by the Hurst parameter 0 < H < 1. H = 1/2
corresponds to white Gaussian noise. For H < 1/2 the
series present short memory (the sum of the autocorrelations
tend to zero), and long memory for H > 1/2 (the sum or
autocorrelations tend to infinity). The fractional Brownian
motion BH(n) refers to the incremental process of correlated
Gaussian variables, where the fractional Gaussian noise
GH(n) refers to the individual steps. fGn is the only
process which is Gaussian, self-similar, and have stationary
increments [9]. They are related as follows:

BH(n) =
n∑

i=0

GH(i)

GH(n) = BH(n)−BH(n− 1)

(4)

being n the discrete time step of the series. For our purposes,
we will work with discrete fGn.
As Gaussian processes, fGn and fBm are completely
represented by their mean and their autocovariance function
[13].

E[GH(n)] = 0, E[BH(n)] = 0 (5)

cov(GH(n), GH(n+ k)) =

σ2

2
(|k + 1|2H + |k − 1|2H − 2|k|2H)

(6)

cov(BH(n), BH(n+ k)) =

σ2

2
(|n|2H + |n+ k|2H − |k|2H)

(7)

ρG(k) =
1

2
(|k + 1|2H + |k − 1|2H − 2|k|2H) (8)

Being n = 0, . . . , N , k ≥ 0 the difference in position between
variables, ρG(k) = cov(GH(n), GH(n+k))/var(GH(n)) the
autocorrelation function of fGn (independent of n), and σ2 the
variance of any individual Gaussian step GH(n).

III. MPE APPLIED TO FRACTIONAL GAUSSIAN NOISE

In this section we expand previous results of PE on fGn
using the Multiscale Approach. In section III-A we define
the properties of a coarse-grained fGn. Section III-B reviews
the symmetry properties of fGn, which we apply to the
coarse-grained fGn. Lastly, in Section III-C we define a scale
dependency from the finite-length constrain of the MPE, and
we compare the results with simulated fGn.

A. Coarse-Graining on Fractional Gaussian Noise

To test the behavior of MPE on fGn, first it is necessary
to know the distribution of noise with complex correlations
within itself. By using the definition in (3) on fGn and
the relation between fGn and fBm in (4), we define the
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coarse-grained fractional Gaussian noise (cfGn) as,

G
(m)
H (j) =

1

m

m∑
i=1

GH(m(j − 1) + i)

=
1

m
(BH(mj)−BH(m(j − 1)))

(9)

for j = 1, . . . , N/m. The Coarse-Graining procedure, by
definition, is a linear combination of the elements in the
segment m. Since the sum of multiple Gaussian variables is
also Gaussian, the cfGn can be completely determined by the
expected value and covariance function.
First, we establish the expected value E[G

(m)
H (j)] = 0, as the

expected value of a sum of independent random variables is
the sum of the expected value of each variable. By using eq.
(7) we obtain the variance of G(m)

H (j),

var(G
(m)
H (j)) = E[(G

(m)
H (j))2]

=
1

m2
E[(BH(mj)−BH(m(j − 1)))2]

= σ2m2(H−1)

(10)

we perform a similar analysis for the autocovariance function
of G(m)

H (j)

cov(G
(m)
H (j), G

(m)
H (j + k))

=σ2m2(H−1)(|(k + 1)|2H + |(k − 1)|2H − 2|k|2H)

=σ2m2(H−1)ρG(k)
(11)

Notice that the structure of the autocovariance function is the
same as the original fGn, but with the added information of
the scale size m. This also implies

ρG,(m)(k) =
σ2m2(H−1)ρGH

(k)

σ2m2(H−1)
= ρG(k) (12)

That is, we conclude that there is no difference between the
correlation function of ρG(k) and ρG,(m)(k). Therefore, the
autocovariance function of the original fGn signal is invariant
to the Coarse-Graining procedure.

B. Permutation Entropy on Fractional Gaussian Noise

Bandt and Shiha [8] found that, for a process with station-
ary increments, the following symetries apply to patterns of
dimension d = 3

p(π123) = p(π321) = p

p(π132) = p(π213) = p(π231) = p(π312) =
1− 2p

4

(13)

where p is a single probability. From (13), they obtained
the expected mass probability distribution of all patterns by
finding only the value of p(π123) for any Gaussian process
with stationary increments. Both GH(n) and G(m)

H (j) satisfy
these conditions. In these cases, p depends on the Hurst
parameter H .
For d = 2, p(π12) = 1/2 regardless of H . For d = 4, some of
the probabilities obtained have complex values, and thus, the

results are difficult to interpret. For d ≥ 5, the probabilities
have no closed-form expression [8].
Therefore, for d = 3, only p(π123) is needed to
get the PE of fGn. First the auxiliary variable
∆G

(m)
H (j) = G

(m)
H (j + 1)−G(m)

H (j) is defined, so that

pG(π123)

= p(G
(m)
H (j) < G

(m)
H (j + 1), G

(m)
H (j + 1) < G

(m)
H (j + 2))

= p(∆G
(m)
H (j) > 0,∆G

(m)
H (j + 1) > 0)

(14)

By following Bandt and Shiha’s [8] derivation, and the
identity arcsin (ρ) = 2 arcsin(

√
(1 + ρ)/2)− π/2,

ρ∆G(1) =
2ρG(1)− 1− ρG(2)

2(1− ρG(1))
(15)

pG(π123) =
1

4
+

1

2π
arcsin(ρ∆G(1))

=
1

π
arcsin

√
1 + ρ∆G(1)

2

=
1

π
arcsin

(
1

2

√
1− ρG(2)

1− ρG(1)

) (16)

Where ρ∆G(k) is the correlation between ∆G
(m)
H (j) and

∆G
(m)
H (j + k). In other words, the probability pG(π123) of a

Gaussian process with stationary increments depends solely
on the autocorrelation function ρ∆G(k), evaluated in k = 1.
With eq. (15) we obtained an explicit form for pG(π123)
depending only on the autocorrelation of the original series.
With these results, and using equation (8), we can obtain an
explicit formula for MPE on fGn,

pG(π123) =
1

π
arcsin

1

4

√
1 + 22H+1 − 32H

1− 22(H−1)
(17)

As we proved in (12), ρG,(m)(k) = ρG(k). This leads to the
conclusion that pG,(m)(π123) = pG(π123), and thus, invariant
to scale.
By using the definition of PE (2) and the symmetry properties
in (13), we arrive to the expression of the MPE on cfGn

H(pG,(m),d = 3) =

− p ln(2p)− (1− 2p) ln(
1− 2p

4
)

(18)

Since pG,(m)(π123) = pG(π123) is invariant to scale, the MPE
of fGn also remains invariant. This implies that any time-scale
dependency will come only from the finite-length constrains of
the MPE, and not from the properties of fGn. We will explain
this phenomenon in section III-C.

C. MPE dependency of Finite-Length cfGn

For all the empirical calculations of PE, N is assumed
to be large. For a small N , the estimations of the pattern
probabilities diverge from the true values from an hypothetical
infinite length signal. Little [10] derived an approximation
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Fig. 1. Simulations of PE of 1500 signals at scales m = 1, 10, 20, 30 (lines), compared to their theoretical predictions (dotted lines), for signal length
N = 5000 (figures a and b) and N = 900 (figures c and d)

of the PE taking into account the dependency of the signal
length. The random variable Yi is defined, with multinomial
distribution, which corresponds with the count of patterns
πi in the original series {x1, . . . , xN}. In the case of white
noise, all patterns have equal probability pi = 1/d!.

Ŷi =
N

d!
+ ∆Yi, {Y1, . . . , Yd!} ∼Mu (N, p1, . . . , pd!) (19)

Using Taylor series expansion,

Ĥ = 1− 1

ln(d!)

∞∑
l=2

(−1)
l

l(l + 1)

d!l−1

N l

d!∑
i=1

(∆Yi)
l

E[Ĥ] ≈ 1− d!− 1

2N ln(d!)

(20)

being ∆Yi the deviation from the parameter N/d!.
We performed similar analysis taking into account the

multiscale coarse-graining procedure. Here, we assumed
an arbitrary pattern probability mass function Ŷi for any
scale m, which deviates from the uniform discrete distribution.

Ŷi =
N

m
pi + ∆Yi, {Y1, . . . , Yd!} ∼Mu

(
N

m
, p1, . . . , pd!

)
(21)

E[Ĥ] = H−

m

N ln(d!)

∞∑
l=1

(−1)l+1

l(l + 1)

(m
N

)l d!∑
i=1

E[∆Yi
l+1

]

pli

E[Ĥ] ≈ H− d!− 1

2N ln(d!)
m

(22)

where H is the theoretical PE for an infinite-length series. We
note that the approximation of first order is always independent
of the probability mass distribution, which is convenient when
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analyzing arbitrary signals. Also, the function introduces a
linear dependency on scale m which comes only form the
length constrains. In general, the subsequent terms of the
expansion depend of the higher moments of ∆Yi, which
require some additional information of the probabilities of
each pattern.
Figures 1a and 1b show a downward linear shift in the
simulations of PE of cfGn, for N = 5000 data points. For
m = 30, the length of the resulting coarse-grained signal is
N/m = 166, which still follows a linear behavior, regardless
of H .
In figures 1c and 1d, we performed the same analysis for
N = 900. The maximum scale has a length of N/m = 30,
which deviates significantly from the linear model. Here, the
deviation suggests the need of a quadratic term approximation
which, in general, depends on H .

IV. DISCUSION

The time scale dependency of the fGn has been explored.
Given that MPE for fGn (for d = 3) has a closed expression
dependent only of one pattern probability, it is possible to
state the invariant behavior with respect scale m. This proves
that infinite-length MPE in fGn does not show any relevant
structures, even though the long and short memory correlations
produce very complex behavior. General signals would not
have this property, but any behavior that arises from the MPE
analysis will differentiate the underlying phenomenon from
noise, correlated or otherwise. More work is needed to assess
the effect of other noise models.
It is necessary, nonetheless, to decouple the true underlying
structure in respect to scale, from the scale dependency intro-
duced by the finite-length restrictions, which is unavoidable in
the coarse-graining for MPE analysis.
The linear model approximation (22) is convenient by its
simplicity and by its independency respect to the pattern
probability mass distribution. By adding a factor of + d!−1

2N ln d!m
to the MPE measure (22), the resulting estimator comes closer
to an infinite-length estimation of PE, thus mitigating the
length problem.
It is important to note that the linear model does not hold for
extreme cases (short length and high scale), and higher order
terms are needed to explain the scale dependency introduced
by the coarse-graining. It is still necessary to propose a
theoretical quadratic term to the model that is independent
of the pattern distribution.

V. CONCLUSION

We performed a theoretical analysis of the behavior of
fractional Gaussian noise under the Multiscale Permutation
Entropy analysis. We proved its behavior is invariant to the
coarse-graining decomposition procedure, regardless of the
correlation introduced by the Hurst parameter. Thus, the
intrinsic properties and complex behavior of fGn are not
captured by the MPE.

Simulations show a clear dependency to scale m, which
comes from the finite-length restrictions of a time series, and
thus, from the coarse-graining procedure itself.
Although the full behavior is complex to model, it is possible
to correct the MPE measurement by a linear term that is
independent to the signal distribution. This mitigates the
length limitations of the MPE, which the coarse-graining
makes difficult to ignore.
Further corrections are possible for short signals or high
scale, but they depend on the distribution of the pattern
length, which requires further knowledge of the signal. A
deeper analysis is needed to propose a method that does not
compromise the robustness of the Permutation Entropy, and
ensure higher precision on short signals.
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