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Abstract—The detection of gravitational waves opened a new
window on the cosmos. The Advanced LIGO and Advanced
Virgo interferometers will probe a larger volume of Universe
and discover new gravitational wave emitters. Characterizing
these detectors is of primary importance in order to recognize
the main sources of noise and optimize the sensitivity of the
searches. Glitches are transient noise events that can impact the
data quality of the interferometers and their classification is an
important task for detector characterization. In this paper we
present a classification method for short transient signals based
on a Wavelet decomposition and de-noising and a classification
of the extracted features based on XGBoost algorithm. Although
the results show the accuracy is lower than that obtained with
the use of deep learning, this method which extracts features
while detecting signals in real time, can be configured as a fast
classification system.

Index Terms—signal processing, wavelet decomposition, ma-
chine learning classification

I. INTRODUCTION

The detection of gravitational waves (GW) has opened
a new window on the Universe. The first detected event,
GW150914[1] and most of the following ones are interpreted
as the coalescence and merging of binary black hole systems.
However, the detection of GW170817 [2] has been produced
by a pair of coalescing neutron stars and its electromagnetic
counterpart has been detected at various wavelengths, thus
inaugurating a new era of multi-messenger astronomy. Al-
though coalescences of binary systems are a primary source
of gravitational waves, other cosmic sources are believed to
produce gravitational wave emission, such as core-collapse
supernovae or rotating pulsars. Furthermore, a continuous
stochastic background is expected due to the superposition of
sources of different kind. Advanced LIGO [3] and Advanced
Virgo [4] are second-generation laser interferometers that will
be ten times more sensitive than previous LIGO and Virgo
detectors. This jump in sensitivity will allow us to explore a
larger volume of Universe and increase the rate of detections.
The upgrades to Advanced LIGO and Advanced Virgo are
related to all major detector subsystems, including optics, sus-
pensions, and seismic attenuation systems. The construction of
Advanced Virgo has been completed at the end of 2016 and
the interferometer has joined LIGO for its second observing

run (O2) on 1 August 2017 up to the end of the run on 25
August.
In order to detect transient gravitational wave signals, two
main methods are used. A matched filtering technique is the
preferred method when the gravitational waveform is well-
known and modeled. In this case, a waveform model is
correlated with the detector strain data [5][6].If the expected
waveform is not known, an agnostic, excess-power strategy
is adopted. The non-stationary, frequency-dependent noise in
the detector limits the sensitivity of the searches. In par-
ticular, noise transients called glitches affect data quality in
the interferometers and could also mimic the time-frequency
behavior of astrophysical signals. Usually transient signals
from astrophysical sources produce consistent delayed wave-
forms in the different detectors due to the propagation time
of the waves, and so they can be discriminated from noise
by comparing data in independent detectors [7]. However,
near-simultaneous glitches can mimic astrophysical signals or
some glitches could result coincident with a near-threshold
Gaussian noise trigger, and thus it is important to monitor the
auxiliary channels of each detector, usually not sensitive to
gravitational waves but rich in information about the status
of the environment and of the interferometer. Characterizing
the glitches is an important task to reduce the impact of
transient noise on the detectors. In particular, the classifica-
tion of glitches can help to perform further investigations to
establish its origin and prepare custom data quality flags in
order to reduce their impact on the detector performance [7].
Inspecting glitches manually is a time-consuming and error-
prone task. Furthermore, the increase of sensitivity in advanced
detectors will lead to new classes of glitches. The use of
machine learning looks to be a promising way to tackle the
classification of glitches. In this paper we present a method to
extract features while detecting signals in the GW main output
channel, followed by XGBoost[8], a supervised technique for
multi-label or binary classification.

II. DATA SIMULATIONS

In order to test the algorithm, we simulated a set of glitches
of different waveform and intensities. With this approach [9],
[10] we can evaluate the classification performance depending
on the parameters of the simulated glitches. The simulated
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transients have been added to a Gaussian colored by the
sensitivity curve (the power spectral density of the detector
strain) of real interferometers. We used the design sensitivity
of LIGO Hanford detector (H1) available online1. Each glitch
is described by the strain time series h(t), and its injected
SNR is the SNR obtained by the Wiener filer with that given
waveform. We have simulated six families of signals, that
approximate the time-frequency evolution of main noise tran-
sients observed in the real interferometers [7]. The simulated
families are those described in [11] and are Gaussian glitches
(GAUSS), sine-gaussian (SG), ringdown (RD), whistle-like
and scattered light-like. We also included a family of chirp-
like transients (CHIRPLIKE), in order to show the potential
of the machine learning pipeline in distinguishing transients
of astrophysical origin and of known waveform, such as
those produced by coalescing binaries. Figure 1 shows the
distributions of the simulated glitches.

Fig. 1. Distribution of simulated glitches. Top: Distribution of Signal-to-
noise ratios. Bottom: Time-frequency distribution. The SNR distribution is
the result of our choice to have an uniform spacing in the parameter space of
the simulated glitches. This results in a larger number of low-SNR glitches,
which is good since we want to have a large statistics of faint glitches, more
difficult to detect and classify.

III. PIPELINE: WDFX

The Wavelet Detection Filter (WDF), developed by one of
the author (Cuoco), was used for the first time in the analysis

1Data publicly available at the LIGO Open Science Center

of the association between gamma-ray bursts and gravitational
wave signal for the GRB 050915a detected by the Swift
satellite in 2005, when the Virgo detector was engaged in one
of its science runs, namely the C7 run [12]. WDF was used
also in the first approaches for unsupervised classification for
glitches [9], [13]. In this work we set up a new version of the
pipeline based on a first stage where the WDF algorithm is
applied and a second stage where the XGBoost [8] supervised
classifier was used to identify the main types of signals. In
this implementation the WDF run as multiprocess pipeline, in
order to obtain a quasi real time pipeline 2.

1) Wavelet Detection Filter.: Wavelet-based algorithms are
well tuned for the identification of transients signals; as
different wavelet types could better match different waveform
morphologies, WDF performs wavelet decomposition using
different types of wavelet basis, including the Daubechies,
Haar and spline wavelets [14]–[16]. The wavelet transform of
a signal f(t) is defined as the projection of f on the wavelet
basis

Wf(a, b) = 〈f, ψa,b〉 =

∫ +∞

−∞
f(t)

1√
b
ψ∗
(
t− a
b

)
dt, (1)

where ψ∗ is the complex conjugate of the mother wavelet.
The wavelet transform has a time frequency resolution that
depends on the scale b. The time spread is proportional to b,
and the frequency spread is proportional to the inverse of b.
The factor a represents a scale, which dilates or compress the
signal.

A. Data Conditioning: Whitening procedure

Before applying any detection and classification pipeline,
the data should be conditioned. The whitening procedure [17]
can remove the contribution of Gaussian colored noise. Many
pipelines use whitening in the frequency domain, while the
whitening applied here is based on a time-domain procedure,
using an Auto Regressive (AR) fit to the data as described
in [17], [18]. The whitening procedure is based on a Linear
Predictor Filter, whose parameters are estimated through a
parametric Auto Regressive (AR) model fit to the noise Power
Spectral Density (PSD), as described in [17]. In this work we
used a model with 4000 AR parameters to fit the noise and
whiten the data.

B. Wavelet de-noising procedure

A digital signal xi that is corrupted by additive Gaussian
random noise ni ∼ N (0, σ2) is given by

xi = hi + ni, i = 0, 1, ...N − 1, (2)

where hi is the transient signal. The signal xi is used to find
an approximation ĥi to the original hi, which minimizes the
mean squared error

2Usually 1 second of raw data is analyzed in less than 3 seconds on a virtual
machine 16 VCPU Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.4GHz equipped
with 32GB RAM

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2667



‖h− ĥ‖2 =
1

N

N−1∑
i=0

|hi − ĥi|2. (3)

If an orthogonal wavelet transform W is applied to the
sequence of data xi, we obtain W (xi) = W (hi) + W (ni).
For a given threshold t and wavelet coefficient w, the wavelet
coefficient is retained if |w| > t, or is set to zero if |w| < t.
This removes wavelet coefficients that are due to background
noise and retains wavelet coefficients that are due to the
transient waveforms. WDF uses the universal Donoho and
Johnstone threshold method [19], where t =

√
2 logNσ̂, N is

the number of data points, and σ̂ is an estimate of the noise
level σ, estimated during the AR parametric fit to the data.
Given wavelet thresholding function t, the threshold based de-
noising can be written as

ĥi = W−1(t[W (xi)]). (4)

The thresholding function is applied to the wavelet transform
of the noisy signal, then the output is inverted and the
wavelet transformed. The effectiveness of the technique is
dependent upon the choice of wavelet used, the decomposition
level, and the amplitude of the threshold value. The wavelet
coefficients contain the energy of the transient at different
scales. After the wavelet thresholding procedure is applied,
only the highest coefficients of the wavelet transform remain.
These coefficients are expected to contain only features of the
transient waveforms. The energy of the transient is given by
the sum of the square of the coefficients above the threshold
value. The SNR is then given by the energy divided by σ̂. A
newer implementation of WDF with respects to the work [9],
[13] was applied in this paper. The clustering procedure of the
event detected by the WDF was applied directly in the Wavelet
domain, and only the coefficient above the threshold, whose
relative distance differ in index values less than 10% in the
wavelet plane are retained. This will help the signal waveform
reconstruction, avoiding the insertion of noisy coefficients. The
meta parameters (SNR, central frequency, duration) describing
the detected waveform are estimated on the reconstructed
waveform.

WDF produces a list of triggers, which include the maxi-
mum SNR and frequency, a GPS starting time for the transient,
the transient duration, the name of the wavelet family which
triggered the event, and the full list of the wavelet coefficients
after the de-noising procedure.

For WDF to correctly identify the glitch, the choice of win-
dow size and overlapping parameter between two consecutive
sliding windows becomes important. For this data set we select
a window size of 1024 points,that is is 0.125 seconds, being
the data sampled at 8192 Hz. We select a small overlapping
window, since we assume all the glitches we are looking for
are contained in 1 window. This is generally not true, since we
simulated events longer than 1 second, but we plan to insert in
the pipeline a second stage for signal reconstruction, linking
the signals found in consecutive windows.

C. Supervised Machine Learning with XGBoost classifier

The concept of Machine Learning (ML) refers to a class
of mathematical functions that are designed to learn from ex-
amples in order to solve new problems. In Machine Learning,
two main branches are present: Supervised and Unsupervised
Learning. In the Unsupervised Learning the algorithm needs
to find correlation from an input of unstructured data while
Supervised Learning means that the algorithm performs cor-
relation tests after it is trained with labeled data.

Supervised learning takes an input variable containing sets
of data of the form X = (xN , yN ) where x represents the
feature vector while y represents the label vector. The process
needs to be trained on this set of data to perform a mapping
of the output variable Y = f(X)

The goal of the supervised learning, and in this case super-
vised classification, is to reach a high accuracy in predicting
the output variable on a given set of input data.

EXtreme Gradient Boosting (XGBoost [8]) implements the
gradient boosting framework. The gradient boosting decision
tree algorithm is a decision tree implementation in which the
objects or classes are classified by moving them down the
tree from the root, to some leaf node where the classification
is generated. At each node of the tree there is a test placed on
that object and, based on this the object can take different
classifications corresponding to each branch starting at the
node. Boosting in this framework consists of having a large
number of weak learners or trees and train them multiple times
in order to minimize the loss function of the mapping.

A model present in the algorithm, for a total number of
trees K, consists of a sum of decision trees, each with a
specific prediction given by fK . Using all the decision trees,
a prediction yi can be expressed as:

yn =
K∑
1

fK(xn), (5)

where xn represents the feature vector of the nth component
of the data series. The loss function, to be optimized when the
model is trained, is the logarithmic loss [20]:

L = − 1

N

N∑
1

((yi log(pi) + (1− yi)(log(1− pi)) + Ω (6)

being pi the predicted values and yi the ground truth value and
Ω a regularization function added to avoid the problem of over-
fitting [8] This characteristic of the algorithm combines the
predictive power given by the loss function and the linearity
from the regularization term. Optimizing this objective is a
key in learning problems and in XGBoost this is performed
using gradient training descending calculations. After the
calculations, the final form of the model contains parameters
that can be used for fine-tuning.

IV. RESULTS

As a first step we have created our training data, by running
WDF on the simulated data sets. The second step is finding
the signals coincident within 0.1 secs with the injected ones.
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Fig. 2. The SNR and frequency distribution of the detected triggers are
reported in the diagonal of the plot. Upper right the scatter plot of SNR
versus frequency, bottom left the scatter plot of frequency versus SNR

WDF with a threshold of SNR = 2 was able to detect 97%
of the injected signals, considering all the signals injected at
different SNR, which is a very high efficiency, considering
that also signals with SNR = 1 were injected in the data.
The average of accidental coincidences, regardless the values
of injected SNR, is around 10%, with a time-shift of 1 sec. A
more detailed study about the efficiency and performance for
WDF as event trigger generation for distinct type of signals is
in progress.

In fig. 2 we reported the meta-parameter values of the recov-
ered signals by WDF. We used a hyper-parameters selection
method for the XGBoost classifier using a grid search cross
validation [21]. The parameter selection could be further tuned,
using also some features selection [22], which have not been
applied in this work. We performed 2 main classification tasks:
• Binary classification: Chirp-like signal versus the rest,
• Multi-label classification.

To prepare our training data we selected only the coincident
triggers, adding almost 2000 not coincident glitches labeled
as ’NOISE’, for a total of 25000 triggers. We then create
train/validation/test sets in the ratio 70/15/15, by random
shuffling the input data set. In table I we reported some of
the parameters used in both tasks. In fig. 3 we reported the

TABLE I
XGBOOST PARAMETERS USED FOR CLASSIFICATION.

Classification xgboost main parameters
task Classes Learning rate max depth estimators

Binary 2 0.01 7 5000

Multilabel 7 0.01 10 6000

loss function versus the number of estimators, for training
and validation data sets. With the selected parameters for

XGBoost, we kept under control the over-fitting. We obtained

Fig. 3. Log loss function for training and validation data set for XGBoost
multi-classification task versus number of estimators. With the selected
parameters we had no over-fitting

an overall accuracy for binary classification of more than 95%,
with a detailed confusion matrix reported in fig. 4. The noise
events set was made by ’glitches’ simulated events different
by chirp-like and some random noise glitches. The chirp-like
events have been correctly identified for 81% of the cases.
While noise events for 98% ones. In the multi-class case, the

Fig. 4. XGBoost binary classification confusion matrix.

overall accuracy obtained was more than 82%, detailed in the
confusion matrix of fig. 5. Longer signals classification have
higher accuracy with respect to the short ones, in particular
for the Sine Gaussian waveform. This could be due to the
selection of a small overlap between two consecutive windows,
in the event a signal falls between them. Work is in progress
to tune the parameters used by WDF and the ones used for
the classifier.

V. CONCLUSION

In this work we have tested the XGBoost algorithm effi-
ciency in constructing a binary and a multi label classifier.
The binary classifier has the purpose to accurately distinguish
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Fig. 5. XGBoost multi label classification confusion matrix.

between a ”chirp-like” morphology which can be associated
with a true compact binary coalescence event and other classes
of ”glitch” morphologies which might be caused by non-
Gaussian external noise events. It has been shown in this work
that the WDF extracted features and the XGBoost algorithm
can classify different datasets of simulated waveforms a with
an accuracy > 90%. The power of the methods relies on the
possibility to have one in-time classifier for the data acquired
by the Gravitational Wave detectors. Further tuning of the
parameters is needed to avoid the lack of the signals on the
edges of the analyzing windows.
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Cavaglià, “Classification methods for noise transients in
advanced gravitational-wave detectors,” Classical and
Quantum Gravity, vol. 32, no. 21, 215012, p. 215 012,
Nov. 2015.

[10] N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra,
and N. S. Philip, “Transient classification in LIGO
data using difference boosting neural network,” Physical
Review D, vol. 95, no. 10, 104059, p. 104 059, May
2017.

[11] M. Razzano and E. Cuoco, “Image-based deep learning
for classification of noise transients in gravitational
wave detectors,” Classical and Quantum Gravity, vol.
35, no. 9, p. 095 016,

[12] Acernese, F. et al, “Gravitational waves by gamma-ray
bursts and the virgo detector: The case of grb 050915a,”
vol. 24, S671, Sep. 2007.

[13] Powell J. et al, “Classification methods for noise tran-
sients in advanced gravitational-wave detectors II: per-
formance tests on Advanced LIGO data,” Classical and
Quantum Gravity, vol. 34, no. 3, 034002, p. 034 002,
Feb. 2017.

[14] I. Daubechies et al., Ten lectures on wavelets. SIAM,
1992, vol. 61.

[15] S. Mallat, A wavelet tour of signal processing. Aca-
demic Press, 1998.

[16] M. Unser, “Ten good reasons for using spline wavelets,”
in Proc. SPIE Vol. 3169, Wavelets Applications in Signal
and Image Processing, 422431.

[17] Cuoco E. et al, “On-line power spectra identification and
whitening for the noise in interferometric gravitational
wave detectors,” Classical and Quantum Gravity, vol.
18, pp. 1727–1751, May 2001.

[18] Cuoco et al, “Noise parametric identification and
whitening for LIGO 40-m interferometer data,” Physical
Review D, vol. 64, no. 12, p. 122 002, Dec. 2001.

[19] D. L. Donoho and J. M. Johnstone, “Ideal spatial
adaptation by wavelet shrinkage,” Biometrika, vol. 81,
no. 3, pp. 425–455, 1994.

[20] C. M. Bishop, Pattern recognition and machine learn-
ing (information science and statistics). Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2006, ISBN:
0387310738.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-
learn: Machine Learning in Python,” Journal of Ma-
chine Learning Research, vol. 12, pp. 2825–2830, 2011.

[22] J. F. T. Hastie R. Tibshirani, The elements of statistical
learning. Springer, 2001.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2670


