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Abstract—Blind beamforming constitutes a unified framework
for the solution of two very important problems in seismological
applications involving ensembles of similar signals, namely the
signal alignment and signal enhancement problems. The former
problem translates into the estimation of the time delays that
exist between the signals, while the second problem deals with the
optimal weighting of the signals, so that the SNR of their weighted
average is maximized. A global optimization technique for the
solution of the alignment problem with a sample-level accuracy, is
proposed in this manuscript. The sample-level alignment problem
is formulated as a combinatorial optimization problem and an
approximate solution is proposed by using the technique of SDP
relaxation. Finally, the signal enhancement problem is formulated
as a quadratic maximization problem which in the vast majority
of cases has an analytical solution, while in more challenging
conditions can be approximately solved via SDP relaxation. The
superior performance of the technique compared to other similar
approaches is demonstrated through a number experiments
involving numerical simulations with several signal and noise
models.

I. INTRODUCTION

The increasing use of sensor arrays in several fields includ-

ing wireless communication, radar, sonar, seismic prospecting,

remote sensing and others, has turned beamforming into a

topic of intensive and ongoing research [1]. The enhancement

effect of beamforming can improve the detectability of weak

signals and facilitate further signal analysis, while the time-

delays between the signals can be translated into information

regarding the location of the source (e.g., the signal’s direction

of arrival). The specific solution to the problem of beamform-

ing depends on the assumptions that can be made regarding

the array’s response, the characteristics of the recorded signals,

as well as the statistical properties of the noise.

There is an extensive literature treating the problem of

beamforming under the scenario of narrowband signals, plane-

waves and precisely calibrated array responses [2]–[4]. On

the other hand, robust beamforming deals primarily with the

effects of imperfect knowledge regarding the array’s response

[5]–[7]. In case the information regarding sensor placement

and response is (totally or partially) missing, the beamforming

problem is referred to as blind beamforming [8]. The majority

of techniques that have been proposed for the solution of

the blind beamforming problem assume narrowband signals

of known characteristics. The constant modulus algorithms

(CMA) [9] and the higher order statistics (HOS) methods [10]–

[12] belong to this category of blind beamforming techniques.

In this manuscript, we treat blind beamforming in its most

general form, meaning that no assumption is made regarding

sensor placement, specific signal features, or specific noise

models. We only assume an ensemble of similar (but not

necessarily identical) signals, recorded with unknown delays,

and corrupted by noise. The goal of the proposed technique is

to obtain the time-delays that yield the optimal joint alignment

of the signals, as well as the non-negative weights that must

be applied to the aligned signals, so that the SNR of their

weighted sum is maximized.

Although it constitutes a general alignment and enhance-

ment framework, the proposed technique is especially suitable

in applications dealing with signals of natural and not man-

made origin, namely, where exact knowledge and control over

the input is missing, as it is the case, for example, with

seismological applications. Waveform similarity in seismo-

logical datasets occurs mainly under two scenarios. Either

when the signal from a single source is recorded by several

similar and closely spaced sensors, or when signals from

several similar and closely spaced sources are recorded by

a single sensor. Records from seismic arrays and datasets

from seismic multiplets (that is, clusters of similar events),

are prime representatives of the the first and second scenarios,

respectively.

Typically, in seismic array processing, beamforming is per-

formed on the basis of predicted time delays that are obtained

by using simplified models of reality (e.g., homogeneous

geology, plane waves) [13] and grid searching techniques.

In this case, the proposed technique can be used for the

design of data-driven instead of model-driven array method-

ologies. It should be noted that the advantages of this signal-

based approach in seismic array processing, have already

been demonstrated [14]. In seismic prospecting the proposed

technique can be considered as a generalization of what is

referred to as optimal stacking [15], [16], where the signals are

assumed already aligned, with the optimization being targeted

only towards the weights. Finally, in the study of seismic

multiplets, the delay estimates, as well as the enhanced average

signal returned by the proposed technique, can be used in

re-location procedures that have been shown to improve the
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accuracy of the event location estimates by several orders of

magnitude [17]–[19].
The remaining of this manuscript is organized as follows. In

Section II we present a general formulation of the problem at

hand and subsequently, in Sections III and IV the proposed

solutions to the ensuing problems of signal alignment and

weight assignment, respectively, are presented in detail. In

Section V we present an outline of the proposed algorithm and

hold a brief discussion regarding the estimation of the required

parameters. Section VI contains our experimental results and

finally, Section VII contains our conclusions.

II. PROBLEM FORMULATION

Let xi(n), i = 1, . . . ,M , denote an ensemble of M time

series, defined as follows:

xi(n) = si(n) + wi(n), n = 0, 1, . . . , N − 1, (1)

where si(n), wi(n) denote the i-th signal and i-th noise pro-

cess, respectively. The involved noise processes are assumed

zero-mean, wide-sense stationary and jointly uncorrelated. Let

also τ = [τ1, . . . , τM ]t, γ = [γ1, . . . , γM ]T denote arrays of

time-delays and of non-negative weights, respectively, and let

the beam (or enhanced signal, depending on the application)

ȳ(n;γ, τ ), be defined as the weighted average of the delayed

version of the available ensemble, namely:

ȳ(n;γ, τ ) �
M∑
i=1

γixi(n− τi). (2)

If we denote as snrȳ(γ, τ ) the SNR of ȳ(n;γ, τ ), the

problem at hand is finding the optimal γ,τ , so that snrȳ(γ, τ )
is maximized, i.e.:

max
γ,τ

snrȳ(γ, τ ), s.t. γ ≥ 0. (3)

By taking into account the assumed stationarity of the

involved processes, the SNR of ȳ(n;γ, τ ), can be expressed

compactly as follows:

snrȳ(γ, τ ) =
γTR(τ )γ

γTΣγ
, (4)

where R(τ ), Σ, are the signal cross-correlation and noise

cross-covariance matrices, respectively. The noise cross-

covariance matrix Σ, is a diagonal matrix having σ2
i in its

i-th diagonal position, where σ2
i denotes the variance of the

i−th process.
As it becomes obvious from Eq. (4), the problem defined

in (3) is non-convex, meaning that a closed form solution

is not possible in the general case. However, satisfactory

approximate solutions can be achieved in a numerical fashion,

via an iterative scheme of alternating optimizations over the

two sets of parameters. This approach yields the following two

maximization problems:

P1: Signal alignment. For a fixed γ, find the time-delays that

maximize the numerator of Eq. (4).

P2: Signal enhancement. For a given τ (that is, for a given

alignment of the signals), find the weights that maximize

the SNR of the average signals, namely snrȳ(γ).

III. OPTIMAL SAMPLE-LEVEL ALIGNMENT

A. A filtering-based reformulation

Let hi = [hi,0, . . . , hi,(L−1)]
T , i = 1, . . . ,M denote M

ideal delay operators of length L each, defined as follows:

hi,n = γiδ(n− τi), n = 0, . . . , L− 1, (5)

where δ(n) denotes the Kronecker delta, γi > 0 and 0 ≤
τi ≤ L − 1, and L is assumed greater than the greatest

pairwise time-difference of the signals. Let also si(n) =
[si(n), si(n − 1), . . . , si(n − L + 1)]T , i = 1, . . . ,M denote

a signal array of length L. Then, we can write si(n) ∗ hi,n =
hT
i si(n) = γis(n−τi), meaning that, after some mathematical

manipulations, the alignment problem P1 can be expressed as

follows:

max
h

hTRh (6)

s.t. hi satisfies (5), 1 ≤ i ≤ M, (7)

where,

R =

⎡
⎢⎢⎢⎣

0 R12 · · · R1M

R21 0 · · · R2M

...
...

. . .
...

RM1 RM2 · · · 0

⎤
⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎣

h1

h2

...

hM

⎤
⎥⎥⎥⎦ , (8)

where Rij is an L×L Toeplitz matrix whose (p, q)-th element

equals rij(p− q), and rij(κ) denotes the cross-correlation of

the (i, j)-th signal pair at lag κ. Thus, for a given set of γi’s,

the signal alignment problem as formulated in (6)-(7), seeks

the optimal placement of the non-zero coefficient in each hi,

so that the quadratic form in Eq. (6) is maximized. This is of

course a problem of combinatorial complexity.

A very useful property stated without proof is the following:

Proposition 1: Condition (5) is equivalent to the combination

of the following three constraints:

‖hi‖2 = γi, ‖hi‖1 = γi, hi ≥ 0. (9)

By combining Proposition 1 with the property trace(ABC) =
trace(BCA) (for any compatible matrices A,B,C), the

original version of the signal alignment problem can be

equivalently formulated as the following trace maximization

problem:

φ∗
o = max

H
trace(RH), (10)

s.t. trace(Hii) = γ2
i , 1 ≤ i ≤ M, (11)

1THii1 = γ2
i , 1 ≤ i ≤ M, (12)

H ≥ 0, (13)

rank(H) = 1, (14)

where H = hhT is a rank-one, LM ×LM matrix consisting

of M2 L× L blocks, arranged as follows:

H =

⎡
⎢⎢⎢⎣

H11 H12 · · · H1M

HT
12 H22 · · · H2M

...
...

. . .
...

HT
1M HT

2M · · · HMM

⎤
⎥⎥⎥⎦ , (15)
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and Hij = hih
T
j . The only non-convex constraint in (10)-(14)

is the rank-one constraint (14), since all other constraints and

the objective function are linear in H. By applying the SDP

relaxation technique [20] we drop the non-convex constraint

(14) and replace it with H � 0, which is convex. Thus, the

relaxed version of (10)-(14) takes the following form:

φ∗
r = max

H
trace(RH), (16)

s.t. trace(Hii) = γ2
i , 1 ≤ i ≤ M, (17)

1THii1 = γ2
i , 1 ≤ i ≤ M, (18)

H ≥ 0, (19)

H � 0, (20)

which constitutes a semi-definite program with variable H ∈
�LM×LM that can be solved by using software packages like

CVX [21].

B. Estimating τ from the solution of the relaxed problem

Let H be the solution of the relaxed problem and ĥ =
ξmax(H), with ξmax(H) denoting the eigenvector that corre-

sponds to the largest eigenvalue of H.

It can be shown that, if H is a rank-one matrix, then ĥĥT

solves the original problem (10)-(14), meaning that in the

equipartition ĥ = [ĥ
T

1 · · · ĥT

M ]T of ĥ, every ĥi is a L × 1
vector with a single non-zero (positive) element. In this case,

the loci of the positive elements produce the set of time-delays

that solve the signal alignment problem. In the general case,

ĥi is a sparse vector with a dominant positive element. Thus,

an estimate τ̂ of the time-delays that lead to the optimal joint

alignment of the signals, can be obtained as follows:

τ̂i = argmax
0≤n≤L−1

ĥi,n, (21)

where τ̂i, ĥi,n denote the elements of τ̂ , ĥi, respectively.

C. Computational complexity and over-relaxation

Although it is polynomially solvable, problem (16)-(20) is

still computationally intensive. The main factor contributing to

its complexity lies in Eq. (19) which introduces LM(LM −
1)/2 inequality constraints to the problem. As a result, (16)-

(20) can become impractical for large filter lengths, namely,

for large values of L (e.g. for L > 20). This depends of course

on the number of signals as well (namely, M ), which, however,

is not a parameter of the problem.

Since L needs to be greater than the greatest pairwise time-

difference of the signals, in cases where the signals can be

separated by large time intervals, we propose solving the

following version of the problem:

φ∗
rr = max

H
trace(R+H), (22)

s.t. trace(Hii) = γ2
i , 1 ≤ i ≤ M, (23)

1THii1 = γ2
i , 1 ≤ i ≤ M, (24)

Hii ≥ 0, 1 ≤ i ≤ M, (25)

H � 0, (26)

where, R+ retains only the non-negative values of R (the rest

are set to 0). The delay estimates τ̂ are again obtaing by using

Eq. (21).

IV. THE OPTIMAL WEIGHTS

As it is obvious from Eq. (4), for a given τ , snrȳ(γ)
constitutes a generalized Rayleigh quotient, meaning that the

following holds:

snrȳ(γ) ≤ λmax(Q), (27)

with equality being reached for

γmax = Σ−1/2ξmax(Q), (28)

where Q = Σ−1/2R(τ ) Σ−1/2 and λmax(Q), ξmax(Q) denote

the largest eigenvalue of Q and the corresponding eigenvector,

respectively. Thus, if γmax has non-negative elements, then

γmax solves the signal enhancement problem. It should be

stressed that, since the estimation of γ succeeds the alignment

of the signals, it is reasonable to expect that in the vast majority

of cases, the correlation matrix R(τ ) will be non-negative,

which is a sufficient condition for γmax ≥ 0 to hold [22].

If this is not the case, then, as we did with the alignment

problem, we can relax the enhancement problem into a semi-

definite program with variable Γ ∈ �M×M :

max
Γ

trace(QΓ), (29)

s.t. trace(Γ) = 1, (30)

Γ ≥ 0, (31)

Γ � 0. (32)

The optimal weights are then estimated as

γ̂ = Σ−1/2ξmax(Γ). (33)

The outline of the proposed technique is summarized in

Algorithm 1 presented in the next section.

V. ALGORITHM

Algorithm 1 SDP-based blind beamforming

1: procedure SDP-BB

2: Estimate correlation sequences, noise variances and L.

3: Set γ = 1.

4: Solve (22)-(26) and estimate initial τ .

5: repeat
6: Update L using maxij maxκ r̂ij(κ).
7: Solve (16)-(20) and estimate τ using Eq. (21).

8: Update γ using (28) or (29)-(33).

9: until There is no change in τ .

10: Return τ , γ.

11: end procedure

As it can be seen in Algorithm 1, the signals are initially

aligned having been assigned equal weights. If an optimal

(joint) alignment is reached, then the algorithm stops after the

first iteration (in this case problem (3) is separable). Otherwise,
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it re-iterates by giving greater importance to signals with lager

weights. Typically, no more than 2-3 iterations are needed.

Parameter estimation is discussed in the next paragraph.

A. Parameter Estimation

Three data-related quantities are required by the proposed

technique, namely, the signal correlation sequences rij(κ), the

filter length L and the noise variances σ2
i .

Firstly, we assume that the noise variances can be estimated

from “quiet” intervals of the data. Since the noise processes

are assumed jointly uncorrelated, the signal correlation se-

quences rij(κ) can be estimated from the pairwise correlation

sequences of the available noisy data, i.e.:

rxij(κ) =
1

N

N−1∑
n=0

xi(n)xj(n+ κ) ≈ rij(κ) + E[wi(n)wj(n)],

as follows: r̂ij(κ) = rxij(κ), i 
= j, r̂ii(0) = rxii(0) − σ2
i ,

1 ≤ i, j ≤ M . Finally, since the filter length must be larger

that the largest time separation of the signals, an indication

for the value of L can be obtained by the maximum of the

lags that maximize the pairwise correlation sequences r̂ij(κ),
namely the quantity max

ij
max
κ

r̂ij(κ).

VI. EXPERIMENTAL RESULTS

This section contains the most representative cases of

simulation experiments that were conducted, with various

signal/noise model combinations. The included results are

focused on the signal alignment aspect of the problem, which

constitutes the main contribution of the manuscript. The so-

lution to the weighting problem is obtained in a closed form

and it is in total agreement with almost all other beamforming

techniques.

The synthetic signals (namely si(n) in Eq. (1)) were mod-

elled as low-pass filtered white Gaussian noise. The corner

frequency of the filter was set at 10Hz, and the sampling

frequency at 100Hz. In order to control the degree of similarity

among the signals of the dataset (in their pure noiseless form),

the M signals were produced by M different filters. Each

filter occurred by adding a random perturbation of a controlled

magnitude to a common low-pass filter prototype. On the other

hand, the noise processes were modelled as first-order AR

processes with a pole of magnitude 0.8, in order to test the

performance of the proposed method in cases of correlated

noise. Finally, in order to construct the synthetic dataset, every

signal was delayed by an arbitrary number of samples (within

specified limits) and multiplied by a constant gain in order to

achieve the desired SNR.

The performance of the proposed method is compared

against two other techniques that share the same assumptions

with the proposed one (see also Section I). More specifically,

the first one (referred to as L1 in Fig. 1) is the technique

proposed in [17] for jointly aligning waveforms of closely

spaced seismic events with the purpose of improving phase

arrival estimates. The author of [17] estimates the pairwise

lags that maximize the respective cross-correlation sequences

and seeks for a set of time-delays τ∗1 , . . . , τ
∗
M that minimizes

the error between the theoretical optimal lag, namely τ∗i − τ∗j
and the observed one, for all possible signal pairs. This leads to

an overdetermined system of M(M − 1)/2 equations with M
unknowns. An approximate solution is obtained by minimizing

the L1-norm of the residual vector. The second technique

included in our comparisons (referred to as MaxEig in Fig.

1) is the blind beamforming technique proposed in [8]. In

this case the desired time-delays are obtained via the maximal

eigenvector of a correlation matrix which is identical to the

matrix R defined in (8), with the exception that the diagonal

blocks of the matrix used in [8] contain the autocorrelation

matrices of the M time series, rather than being empty.

Experiment I

The goal of the first experiment is to asses the sensitivity

of the proposed sample-level alignment technique with respect

to the quality (i.e., the SNR) of the available dataset. To this

end, we used signals with a very high degree of similarity in

their pure form (having pairwise correlation coefficients in the

neighbourhood of 0.9), by limiting the amount of perturbations

introduced to the signal-producing filters. We then tested the

performance of the technique against the techniques of [17],

[8], under the AR-modelled noise scenario, for several SNR

values. For every SNR value 100 synthetic datasets were

constructed, each containing 15 signals with arbitrary delays

of up to 10 samples from a reference point (pairwise delays

of up to 20 samples) and corrupted by noise.

The superior performance of the proposed technique be-

comes readily apparent from the (empirical) cumulative distri-

bution functions (CDFs) of the delay-estimation error, shown

in Fig. 1.(a), The errors are in samples and a point (x, y) on

the curve signifies that the probability of having an estimation

error of at most x samples, is equal to y. The filter length

was set to L = 25 for the first step of the proposed technique

(i.e. for the solution of the proposed over-relaxed problem),

as well as for the technique of [8]. The relaxed problem was

solved with a filter length of L = 6 (for a correction of up to

±5 samples), having the solution of the over-relaxed problem

as a starting point.

Experiment II

In the second experiment we evaluated the performance of

the proposed technique in the presence of outliers (that is,

irrelevant signals) and under the scenario of low-similarity

datasets, respectively. In the first case, out of the 15 signals

contained in every dataset, 7 were outliers, while in the sec-

ond, we increased the perturbations introduced to the signal-

producing filters, leading to signals with pairwise correlation

coefficient in the neighbourhood of 0.6.

The parameters used were identical to the first experiment

and the results obtained for the AR noise case with SNR= −6
dB are shown in Fig. 1.(b) & (c). Although there is an apparent

drop in the performance of all used techniques (see also Fig.

1.(a) in comparison), especially in the case of low-similarity
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(b) Low-similarity signals

Error (samples)
0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1

MaxEig
Proposed-OR
Proposed-R
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Fig. 1: Empirical CDFs of the pairwise time-delay estimation errors obtained for the scenarios of (a) high-similarity datasets (b) low-
similarity datasets, and (c) presence of outliers. In all shown cases the signals were corrupted by AR-modelled noise with an SNR of −6
dB.

signals, the proposed technique manages to outperform its

rivals by a safe margin.

VII. CONCLUSIONS

Blind beamforming is formulated as a combination of

the signal alignment and signal enhancement problems. The

sample-level signal alignment problem is a problem of combi-

natorial complexity which is relaxed and approximately solved

by using the SDP relaxation technique. An efficient over-

relaxed version of the problem is also proposed. On the other

hand, the signal enhancement problem leads to a quadratic

maximization problem which in the vast majority of cases

has an exact solution, while in more challenging conditions

is solved in an approximate fashion. The main contribution

of the manuscript is the use of SDP for the blind solution

of the signal alignment problem, which results in very robust

and accurate estimations of the pairwise time delays between

the signals. This makes it especially suitable for seismological

applications that rely in blind time-delay estimation for the

solution of enhancement or localization problems. The supe-

riority of the proposed technique was demonstrated through a

number of numerical simulations.
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