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Abstract—Separation of underdetermined speech mixtures,
where the number of speakers is greater than the number
of microphones, is a challenging task. Due to the intermittent
behaviour of human conversations, typically, the instantaneous
number of active speakers does not exceed the number of mi-
crophones, namely the mixture is locally (over-)determined. This
scenario is addressed in this paper using a dual stage approach:
diarization followed by separation. The diarization stage is based
on spectral decomposition of the correlation matrix between
different time frames. Specifically, the spectral gap reveals the
overall number of speakers, and the computed eigenvectors form
a simplex of the activity of the speakers across time. In the
separation stage, the diarization results are utilized for estimating
the mixing acoustic channels, as well as for constructing an
unmixing scheme for extracting the individual speakers. The
performance is demonstrated in a challenging scenario with six
speakers and only four microphones. The proposed method shows
perfect recovery of the overall number of speakers, close to
perfect diarization accuracy, and high separation capabilities in
various reverberation conditions.

Index Terms—Blind audio source separation (BASS), diariza-
tion, relative transfer function (RTF), simplex.

I. INTRODUCTION

Blind audio source separation (BASS) methods aim at ex-
tracting the source signals of the individual speakers from their
measured mixtures without any prior knowledge of the sources
or the mixing acoustic channels [1]. Numerous BASS methods
were proposed over the last decades, exploiting various as-
sumptions regarding the sources and the mixing systems, such
as: statistical independence [2], admitting sparse representa-
tions [3], decomposability to non-negative components [4],
W-disjoint orthogonality (WDO) in the time-frequency (TF)
domain [5]-[7], etc.

Diarization methods focus on identifying the speakers’
identity in short time segments of audio signals [8], [9].
Most diarization algorithms apply some preprocessing to the
data, typically including feature extraction and segmentation
to speech/non-speech intervals. Various features are commonly
used, where the mel frequency cepstral coefficients (MFCCs)
and time difference of arrival (TDOA) estimates are widely-
spread. Then, the detected speech segments are clustered into
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individual speakers using, for example, bottom-up or top-down
hierarchical clustering methods [10].

Despite their clear relation, only a few approaches address
joint diarization and separation [11]-[15]. More commonly,
BASS and diarization are treated as separate problems and
are devised with different assumptions regarding the mutual
activities of the different speakers. Most BASS methods impli-
citly assume that all the speakers are continuously and concur-
rently active, whereas most diarization methods consider non-
overlapping speakers. However, neither of these assumptions
hold in many real-world scenarios, for example, in meeting
rooms, where partial overlap of several speakers is common.

In this paper, we propose a dual-stage approach of diariza-
tion and separation. The separation stage relies on the dira-
rization outcomes, namely, in each time segment an umixing
procedure is applied to a small set of active speakers, identified
in the preceding diarization stage. Our approach can support
challenging scenarios of underdetermined mixtures, with more
speakers than microphones, where at each point in time the
instantaneous mixture is (over-)determined, i.e. the number of
speakers does not exceed the number of microphones.

The diarization method relies on spectral decomposition of
the correlation matrix defined between different time frames.
The justification of the method is based on a probabilistic
model, in which the column space of the correlation matrix is
spanned by the probabilities of the various speakers across
time. Accordingly, the spectrum decay reveals the overall
number of speakers, and the computed eigenvectors form
a simplex of the speakers’ activity probabilities. Based on
the diarization outcomes, the mixing acoustic systems are
estimated using time frames, which are highly dominated by
a single speaker. Then, an unmixing scheme is constructed to
extract the individual speakers. The performance is validated
in a separation task of two simultaneous conversations with
three speakers each, using an array of four microphones. High
diarization and separation scores are demonstrated in various
reverberation conditions, as well as perfect recovery of the
overall number of speakers.

II. PROBLEM FORMULATION

Consider J speakers measured by an array of M microp-
hones in a reverberant environment. The signals are analysed
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in the short time Fourier transform (STFT) domain, where [ €
{1,...,L} and f € {1,...,F} are used to denote the frame
and the frequency indices, respectively. We use the narrowband
approximation entailing that the jth signal measured by the
mth microphone is given by Y™(l,f) = AT(f)S;(, f),
where S;(l, f) denotes the signal of the jth speaker, and
A7'(f) denotes the acoustic transfer function (ATF) relating
the jth speaker and the mth microphone. Accordingly, the
mixed signal Y (I, f) measured by the mth microphone is
given by:

J J
YL f) = LY () =Y LOH ()Y ()
j=1 j=1
n 1
where H"(f) = & ((Jf)) is the relative transfer function (RTF)

of the jth speaker, defined between the mth microphone and
the first microphone, which serves as a reference microphone.

Here, Z;(l) is an activity indicator which equals one if the
jth source is active in the /th frame and zero otherwise. We
assume that the overall mixture is underdetermined, i.e. J >
M. However, the mixture is locally (over-)determined, i.e. in
each frame the number of active speakers does not exceed the
number of microphones:

J
N=Y) L) <MVI<I<L 2)
j=1

Our goal is to recover the number of speakers J, and to
perform both diarization and separation of the measurements.
In the diarization stage, each frame is assigned with its
corresponding set of active speakers, namely the value of the
indicator functions are estimated for each frame 1 < [ < L
and speaker 1 < 57 < J. In the separation stage, the individual
speakers are extracted from the measured mixtures.

III. SEPARATION METHOD

We propose a separation scheme, which assumes that the
activities of the speakers across time and the estimated RTFs
are available. Let S; denote the set of J; active speakers in
the /th frame, ie. §; = {j | Z;(I) = 1, j € {1,...,J}}.
The jth source (as measured by the reference microphone)
is extracted from the measurements (1) using the following
unmixing scheme:

. bA (1, fy(l, f) jeS,I>1
Vi f)=1 Y'([) jeS, =1 Q)
0 JE€S

where
T
y(.f)=[Y )Y W f),....YM( f)]
“4)
and b;(l, f) consists of the pseudo-inverse of the instantane-
ous mixing system at frame [:

b;(l.f) = CLHCLNHTCLH ') )
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where the estimated RTFs of the active speakers in S; consti-
tute the columns of C(I, f) € CM>*7Ji_ The vector g; (1) is a J;
dimension vector that extracts the jth speaker, with one in the
corresponding entry of the jth speaker and zeros elsewhere.

In order to compute (5) an estimation of the RTFs of the
different speakers is required. We define the set L£;, which
consists of frame indices for which only the jth speaker is
active, i.e. Z;(!) = 1 and Z;(I) = 0, Vi # j. Exploiting the set
L;, the RTF of the jth speaker can be estimated by:

. Zleﬁj Ym(l’ f)Yl*(l7 f)
T e, VLY

3 (f) (©)

The proposed unmixing scheme (3) requires an identifica-
tion of the sets {S;}; of active speakers in each frame [, as
well as an RTF estimation (6) based on the sets {£;};. The
remainder of this paper presents a diarization method, in which
the value of the indicator functions {Z;()}, ; is determined,
facilitating the estimation of the sets {S;}; and {L£;};.

IV. DIARIZATION METHOD

A. Statistical Model

In a multichannel static setup, each speaker can be uniquely
identified by its spatial signature, manifested in the associated
RTF values. For each speaker, we define an RTF vector h;
with D = 2. (M — 1) - K elements for the real and the
imaginary parts of the RTF values, in K frequency bins and
in M — 1 microphones:

W = [H(f), H (fa), - H ()]
he — {h?T,hi’TT ..m?ﬂr. 7

J 0

h, = {real {h;}T ,image {hg}T} !

;=
Note that hjl- is an all-ones vector for all 1 < [ < L, hence
excluded from h; in (7). We assume that the RTF vectors are
i.i.d. random vectors with zero-mean and a unit covariance
function:

E{hjh]} =1p. (8)

Further discussion on these assumptions can be found in [16].

The RTFs are hidden vectors, which represent the diffe-
rent speakers in a multichannel scenario. We would like to
extract instantaneous observation vectors from the measured
mixtures (1), and show their relation to the defined hidden
vectors. We assume that low-energy frames do not contain
speech components, and hence these frames are excluded from
our analysis. We adopt the WDO assumption [5], stating that
each TF bin is exclusively dominated by a single speaker.
Accordingly, we assume that the (I, f)th TF bin is occupied by

either of the speakers with probabilities {p; (I)};_,, satisfying
ijlpj(l) = 1. Hence, we have:
Yo, f) =Y, (1 f) )
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where 7; has a categorical distribution with Pr(n = j) =
p;(1). We compute the following instantaneous ratio:

v, f) Y f)
YL ) YL )
which due to the sparsity assumption, equals the RTF of one
of the speakers. Based on the computed ratios, we define the
observation vector a(l), which consists of the real and the
imaginary parts of the ratio values, in K frequency bins and
in M — 1 microphones (Recall (7)):

a™(l) = [R™(, f1), R™(I, f2), ..., R™(l, fx)]"
T T T T
a’(l) = [a2 (0,a* (1),...,aM (Z)}

T
a(l) = [real{ac(l)}T,image {ac(l)}T} (11)

We compute (10) and (11) for each frame 1 <[ < L, and
form the set {a(l)}lel. Note that according to the defined
model, the observation vectors {a(l)}lel consist of different
portions of the RTF vectors {h; };.]:1. For each [, the number
of entries in the vector a(l) corresponding to a particular
RTF hj, is proportional to the probability p;({) of the jth
speaker. Consider for example a case where J =2, p;(I*) =
0.7, p2(I*) = 0.3 for a particular time frame {*. In the vector
a(l*), approximately 70% of the entries are taken from the
vector hj, and approximately 30% of the entries are taken
from the vector hs.

Consider the set of probabilities associated with each frame
I: p(l) = [p1(1),p2(l),...,ps(1)]F. The collection of all
probability sets {p(l)}%, occupies the standard (J — 1)-
simplex in R”. The vertices of the simplex are the standard
unit vectors {ej}jzl, where e; = [0,...,1,...,0], with one
in the jth entry and zeros elsewhere. Note that recovering the
probabilities associated with each frame reveals the activity
patterns of the different speakers across time, which resolves
the diarization problem.

Rm(lvf) = :H;CL(Lf) (10)

B. Analysis of the Correlation Matrix

We show that a spectral decomposition of the correlation
matrix between different time frames can be used to form
a new representation, which corresponds to the simplex of
the speakers’ probabilities across time. Based on the assumed
statistical model (8),(9),(10), the correlation between each two
observations a(l) and a(n), 1 < I,n < L is given by (for
details refer to [16]):

E {éaT(l)a(n)} _ { lzjzlpj<l>pn<z>

Let W be the L x L correlation matrix, with W, =
E{+aT(l)a(n)}. According to (12) the correlation matrix
can be recast as:

LEn (1
l=n

W = PPT + AW (13)

where P is a L x J matrix with Pj; = p;(l), and AW is
a diagonal matrix with AW, = 1 — Ejzlp?(l). We show
in [16], that AW has a negligible effect on the spectral
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decomposition of W. Therefore, henceforth we omit AW
from our derivations, and assume that the correlation matrix is
given by W ~ PP7. Accordingly, the rank of the correlation
matrix W is identical to the rank of the matrix P, which equals
the overall number of speakers J (due to their independence
assumption).

We apply an eigenvalue decomposition (EVD) W =
UDUTY, where U is an orthonormal matrix consisting of the
eigenvectors {u; }]Ile, and D is a diagonal matrix with the
eigenvalues {\;}7_, on its diagonal. The eigenvalues {\;}1_,
are sorted in a descending order. According to (13), the first
J eigenvectors {u; }3-]:1, form a basis for the column space of
the matrix P, leading to the following relation:

U, =pPQT (14)

where Uy = [uy,...,uy], and Q is a J x J invertible matrix.
Regarding the computation of the matrix W, we substitute
the unavailable expected values by their typical values W;,, =
+LaT(l)a(n). This approximation is justified in [16].

We represent each frame using the obtained set of eigenvec-
tors by: v(I) = [u1(1),uz(l),...,us(1)]T. According to (14),
this representation is obtained as a linear transformation of the
set of the speakers’ probabilities:

v(l) = Qp(l).

Hence, the collection {¢/(I)}/, occupies a simplex, which is a
rotated and scaled version of the standard probability simplex
occupied by {p({)}£ ,. Note that the columns of Q consist
of the transformed simplex vertices:

Qe; = Q;

where Q; is the jth column of Q.

15)

(16)

C. Speaker Counting and Diarization

We recover the overall number of speakers and perform
diarization based on the computed spectral decomposition of
the correlation matrix W. Recall that the rank of W equals
J, implying that it has exactly J non-zero eigenvalues. Con-
sequently, the overall number of speakers can be estimated by
the following thresholding rule on the normalized eigenvalues:
s ( Y )

J = (argmin = <« —1 a7
i M
where « is a threshold parameter.

Let [; denote an index of a frame consisting of only the
jth speaker, i.e: p(l;) ~ e;. To perform dirazation, we first
identify the vertices of the simplex with indices {/; }37:1. For
this purpose we use a successive projection algorithm [17]. We
first identify two vertices of the simplex, and then successively
identify the remaining vertices by maximizing the projection
onto the orthogonal complement of the space spanned by the
previously identified vertices.

Based on (16), we construct the matrix Q using the identi-
fied set of vertices Q = [v(l1),...,v(1;)]T. We utilize Q to
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Fig. 1. Block diagram of proposed method.

map the obtained representation v(l) to the associated set of
probabilities p(l) by (Recall (15)):

p(l) =Q 'v(l) (18)

The values of the indicator functions of the different spea-
kers are determined by a hard-thresholding over the estimated
probabilities:

: L opi(l)>p
(1) = X

50 { 0 p;(h)<p
where (3 is a threshold probability. Accordingly, the instantane-
ous number of active speakers is given by: J; = Z‘j]:l Z; ().

In addition, we exploit the estimated probabilities to form
the sets of frame indices {£;};_, dominated by each of the
speakers. We define the set £; by:

£j={llpj(l)>’)/,lE{l,...,L}}

where +y is a threshold probability, larger than 3.
Based on the identified sets of frames {L; }3]:1 and the es-

19)

(20)

timated indicator functions {fj(l)} ., a separation is carried

out applying the unmixing scheme pr%sented in Section III. A
flow diagram of the proposed algorithm is presented in Fig. 1.

V. EXPERIMENTAL STUDY

We examine the performance of the proposed method in a
challenging underdetermined scenario with J = 6 speakers
and M = 4 microphones. We assume that the speakers are
divided into two groups of three speakers each, where each
group is holding a separated conversation. Within each group
only one member is speaking at a time. The two conversations
are held simultaneously, hence at each time instance there
are at most two concurrent speakers (J; < 2). The overall
conversation of each group lasts 24s, with two sentences of
4s for each speaker. The sentences, sampled at 16kHz, are
drawn from the TIMIT database, and are normalized to a
fixed energy level (input signal to interference ratio (SIR) is
approximately 0dB). The speakers and the microphones are
positioned in a 6mx6mx2.4m room, as illustrated in Fig. 2.
The corresponding acoustic impulse responses are drawn from
the database presented in [18]. The four microphones (out of
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Fig. 3. True and estimated probabilities of the different speakers. The
members of the first group are colored by: blue, orange and green, and the
members of the second group are colored by: red, purple and light blue.

the eight available channels in the database) are organized in
a uniform linear array with 8cm inter-microphone spacing.

The signals are analysed in the STFT domain using win-
dows of length 2048 samples and with 75% overlap, leading
to a total amount of L = 778 frames. The ratios computed
by (10) are averaged over 5 successive frames. The RTF vector
in (11) consists of K = 576 frequency bins, corresponding
to 0 — 4.5kHz frequency band, in which most of the speech
content is concentrated, and is normalized to have a unit
norm. The estimated probabilities of each speaker are zeroed
in regions where low activity is detected, and are normalized
such that their sum is one. The threshold parameters are set
to a = 0.11, § = 0.08 and ~ = 0.95, which empirically yield
good and stable results.

We first demonstrate the diarization performance, when
the reverberation time is 360ms. Figure 3 depicts the true
probabilities (top plot), computed using the individual spea-
kers, and the estimated probabilities (bottom plot), computed
by (18), as a function of the frame index. We observe that
the estimated probabilities represent similar trends to the true
probabilities, even in time segments with two simultaneous
speakers. For the same case, Fig. 4 presents the true and
the estimated indicators (19) with respect to the time-domain
waveform measured by the reference microphone. We see
that the proposed algorithm successfully recovers the activities
of the speakers across time, and performs almost perfect
diarization.

The diarization and the separation performance are further
evaluated for different reverberation levels of 160ms, 360ms
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Fig. 4. Waveform of reference microphone. The true and the estimated
indicators are illustrated by asterisks in compatible colors (same as in Fig. 3),
denoting active time instances of each speaker.

TABLE I
DIARIZATION ACCURACY AND AVERAGE SIR AND SDR MEASURES.

Diar. Acc. SIR SDR
Oracle Proposed Oracle Proposed
160ms 99.1 26.9 243 14.8 124
360ms 99.1 26.2 235 10.5 9.4
610ms 98.8 24.8 20.1 6.5 5.7

and 610ms. We compare the proposed method to an oracle
separator based on (3), in which the RTFs and the indicator
values are computed using the individually measured signals.
Diarization accuracy is assessed by the percentage of correctly
estimated indictor functions (out of L x J). The separation
performance is reported in terms of SIR and signal to distortion
ratio (SDR) measures, evaluated by the BSS-Eval toolbox [19].

The measures are averaged over 20 trials with different com-
binations of speakers. The overall number of speakers (J = 6)
was perfectly recovered in all trials using (17). Diarization and
separation measures are summarized in Table I. We observe
that the proposed method achieves high diarization accuracy
of more than 98% for all reverberation levels. Regarding the
separation performance, the difference between our method
and the oracle is attributed to RTF estimation inaccuracies,
which are estimated using only a few frames with possibly
low components of other speakers. Nevertheless, using a
completely blind approach the proposed method achieves high
separation scores with average 22.6dB SIR and 9.2dB SDR.

VI. CONCLUSIONS

We have presented a method for combined diarization
and separation of underdetermined mixtures with unknown
number of speakers. The diarization stage is based on spectral
decomposition of the correlation matrix between different time
frames. The spectrum decay reveals the overall number of
speakers, and the computed eigenvectors form a simplex that
facilitates the estimation of probabilities of speakers. The
separation stage exploits the diarization results. Frames, which
are highly dominated by a single speaker, are utilized for es-
timating the corresponding RTFs, and an unmixing scheme is
carried out to extract the individual speakers. The performance

of the proposed method is demonstrated in a challenging
scenario with six speakers and only four microphones in

various reverberation conditions.
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