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Abstract—The restoration of click degraded audio signals is important
to achieve acceptable audio quality in many old audio media. Restoration
by missing sample estimation based on conventional linear prediction has
been extensively researched and used; however, it is hampered by the
limitations of the linear prediction model. Recently, it has been shown
that high-order sparse linear prediction offers better representation of
music and voiced speech over conventional linear prediction. In this
paper, the use of high-order sparse linear prediction for missing sample
estimation of click degraded audio signals is proposed. The paper also
explores a possible computational time saving by combining the high-
order sparse linear prediction coefficient determination and filtering
operations. Evaluation with different types of speech and audio data
show that the proposed method achieves an improvement in SNR over
conventional linear prediction based filtering for all considered speech
and audio data types.

Index Terms—Missing sample estimation, Click degradation, Linear
prediction, High-order sparse linear prediction

I. INTRODUCTION

The term ‘click’ is used to refer to finite duration artifacts which
occur at random positions in an audio signal [1]. Clicks are perceived
by the listener as impulsive noise ranging from tiny ‘tick’ noises,
‘scratch’ to ‘crackle’ noise. These artifacts arise due to defects on the
physical medium from microscopic surface irregularities to physical
breakage of the medium [2]. Ideally, a missing sample estimation or
interpolation technique used to restore click degraded audio signals
should restore only those samples which are degraded, without
modifying the undegraded signal. Two tasks are thus important for
a successful click removal system: detection of degraded signal
samples/segments and estimation of restored samples in degraded
segments. In this paper, only the estimation problem is considered.

Several methods have been proposed for restoration of click
degraded audio signals. Maximum a Posterior (MAP) Interpolator
that uses Bayesian inference as a means of incorporating prior
information about the restoration problem has been proposed in
[3]. By assuming the clicks as a zero-mean multivariate Gaussian
process, it combines the detection and estimation procedure. It does
not make any assumption about the underlying signal generation
process. It has the appeal of being the ‘most probable’ solution of all
the possible solutions. However, the problem of click detection and
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estimation involves maximizing the probability by searching through
all states. Searching for all possible states will be computationally
impractical as there are a total of 2N different click states for
a signal of length N . Several approaches have been proposed to
overcome this limitation of the MAP interpolator by incorporating
additional a priori information in the interpolation. Linear prediction
(LP) based methods that incorporate the source-filter model of speech
production have been proposed and used extensively in the literature
for restoration of click degraded speech and audio signals [1], [3],
[4], [5].

The autoregressive interpolator [1] is based on the assumption that
the underlying audio signal is generated by passing an excitation
through an all-pole filter. The least square (LS) interpolator data
is obtained by minimizing the squared prediction error under the
assumption that the noise samples within click bursts are mutually
independent and drawn from a Gaussian zero-mean process. It
has been shown that the LS solution can be found from the LP
coefficients, the range of known and range of missing samples [1].

The LS solution has several limitations, one of which is the fact
that the AR coefficients of the undegraded underlying signal are
unknown and need to be determined. Janssen et. al. [6] proposed a
method that minimizes a sum of squared residual errors involving the
unknown samples, the LP coefficients, and the known samples from a
sufficiently large neighborhood as a function of the unknown samples
and the unknown LP coefficients. It is an iterative method whereby
in each iteration minimization with respect to the LP coefficients
and, subsequently, minimization with respect to the unknown samples
are performed. The LP coefficients of the filter are identified by
minimizing the `2-norm of the residual, the difference between the
actual and predicted signal. This works well for unvoiced speech; that
is, when the samples of the excitation are Gaussian and independent
identically distributed [7]. This is not the case for voiced speech, as
the excitation is spiky and quasi-periodic, and music [6]. In this case,
the estimation of the LP coefficients by minimizing the `2-norm is
observed to give more emphasis to the periodic peaks of the residual
[8]. Therefore, it trades off spectral envelope estimation accuracy to
estimating the position of the poles due to the excitation [8]. Several
methods have been proposed to mitigate these effects. One of the
most recent is the use of sparse linear prediction (SLP), that tries
to maximize the sparsity of the residual as well as the prediction
coefficients. By using high order sparse linear prediction (HOSpLP)
a more efficient decoupling between the pitch harmonics and the
spectral envelope has been achieved in [7], [9], [10]. Even though
it was originally used for speech processing purposes, it has found
applications in many fields such as radar processing [11], geology
and general signal representations [12].
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Another drawback of LS interpolator is that it requires the use
of a pitch predictor to predict long-term correlation. As such, the
performance of the system is always limited by the accuracy of
the pitch predictor. In [13], a sparse linear prediction approach that
minimizes the `2-norm was proposed to jointly model the short-
term and long-term correlations. It showed improved SNR over
conventional LP methods. Similar work was proposed in [14] that
uses sparse AR modeling to construct a cascade of formant filter and
pitch filter to eliminate impulsive disturbances from archive speech
signals. However, in both works the limitation due to the use of the
`2-norm was not addressed.

In this paper, the use of HOSpLP coefficients in missing sample
estimation of click degraded speech and music is proposed. The use
of HOSpLP can jointly solve both problems (emphasis on quasi-
periodic excitation and pitch prediction) of conventional LP based
missing sample estimation. It should also be noted that HOSpLP-
based signal restoration can be considered as an extension of sparsity-
based audio inpainting [15] with the novel aspect of using signal-
dependent dictionaries.

This paper is organized as follows. Section II formally describes
SLP. Section III presents the proposed method and discusses different
aspects of the algorithm. Section IV presents the data used, the
type of artificial click degradation and the performance measure
used. Finally, section V presents the results of the proposed method
in comparison with conventional LP. Finally, section VI presents
additional discussions and concludes the work.

II. SPARSE LINEAR PREDICTION

The solution for finding the LP coefficient vector a from a set of
observed samples x can be formulated as the following optimization
problem [7]:

a = arg min
a

∣∣∣∣x−Xa
∣∣∣∣p
p
− γ
∣∣∣∣a∣∣∣∣k

k
(1)

where,

X =

x(N1 − 1) · · · x(N1 − P )
...

. . .
...

x(N2 − 1) · · · x(N2 − P )


N1 and N2 are the start and end indexes of the frame,
P is the prediction order,
γ is the regularization parameter;

The `p-norm operator ||.||p is defined as

∣∣∣∣x∣∣∣∣
p

=

( N2∑
n=N1

|x(n)p|
) 1

p

(2)

In conventional LP, the `2-norm is used, therefore p = 2. In
addition, no a priori information about the coefficient vector is
assumed and therefore the regularization parameter γ = 0.

One of the motivations of using SLP is to decrease the emphasis on
outliers in the residual so that the estimated spectral envelope is less
affected by the quasi-periodic excitation [7]. This can be achieved
by considering the sparsity of the residual, i.e. by minimizing the
‘`0-norm’, instead of the `2-norm. Even though, the ‘`0-norm’ is an
ideal candidate for measure of sparsity, it results in a combinatorial
problem that is NP hard. To alleviate this problem the `1-norm,
p = 1, can be used as a convex relaxation of the ‘`0-norm’ [7]. In
addition, by taking the sparsity of the coefficient vector into account
by making γ 6= 0, setting k = 1 and using a high-order sparse linear
predictor, the short-term predictor, associated with the formants, and
the long-term predictor, associated with pitch excitation, can be
jointly estimated [7]. This stems from the fact that a cascade of the

short-term predictor filter and long-term predictor filter results in a
filter that has few non-zero coefficients [16]. As such, the sparsity of
the coefficient vector can be used as a regularization term in the cost
function in addition to the sparsity of the residual.

The regularization parameter, γ, controls the trade-off between the
sparsity of the residual and the sparsity of the predictor coefficients. In
[17], the modified L-curve was used to find an optimum value of γ as
the point of maximum curvature of the curve (||x−Xa||1, ||a||1) for
different values of of γ. An adaptive update algorithm for estimating
the regularization parameter that was based on the observation that
the optimal γ is related to the pitch gain was proposed in [10].

It has been shown in [7] that for voiced speech and music, the use
of the `1-norm and HOSpLP outperforms conventional LP in spectral
envelop estimation, sparsity of prediction residual and sparsity of the
prediction coefficients.

III. PROPOSED METHOD OF RESTORATION

In this paper a novel method of restoration of click degraded audio
signals is proposed that uses HOSpLP coefficients instead of using
the conventional LP coefficients in the iterative Janssen algorithm
[6] for estimating the missing samples as shown in Algorithm 1.
The click degraded segment location and duration are assumed to
be known a priori. The HOSpLP coefficients are estimated by using
the Alternating Direction Method of Multipliers (ADMM) algorithm
[12] shown in algorithm 2.

Algorithm 1 HOSpLP Based missing sample estimation. Modified
from [15] by incorporating HOSpLP model

1: procedure JANSSENINTERPOLATION HOSPLP

2: Input: s,vm,vObs, P, L, γ,K, ε
3: Output: x̂
4: Θ =

∣∣vm11×N − 1M×1[1, 2, · · ·N ]
∣∣;

5: x̂vObs = svObs ; x̂vm = 0; Φ = 0M×N ; l = 0;
6: for l ≤ L do
7: a =L1L1 SLP ADMM(x̂,P ,γ,K,ε);
8: b =

[
1 −aT

]
A;

9: Φi,j = bΘi,j+1; ∀i, j : Θi,j > P
10: x̂ = −Φ−1

(1:M,vm)Φ(1:M,vObs)svObs ;
11: l← l + 1;

12: Return

Where:

s is the click degraded signal to be restored;
M is the number of missing samples;
N = N2 −N1 is the number of samples in each frame;
vObs is a vector index of known samples;
vm is a vector index of click degraded samples;

A =


1 −a1 −a2 · · · −aP
−a1 −a2 · · · −aP 0

...
...

...
. . .

...
−aP 0 0 · · · 0

 ;

L is the number of Janssen iterations; and
K is the maximum number of ADMM iterations.

Algorithm 1 is iterative and computationally expensive due to the
nested ADMM iteration at step 7 of the algorithm. This nested iter-
ation significantly increases the computational cost of the proposed
algorithm. One way to alleviate this increased cost is to merge the two
iterations into one. The merging can be achieved by re-estimating the
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missing samples inside the ADMM iteration. The ADMM algorithm
for solving L1-regularized linear regression problem [12] obtains SLP
coefficients by starting from the conventional LP coefficients and
iteratively minimizing the sum of `1-norm of the estimation error
and `1-norm of the coefficients as shown in Algorithm 2.

Algorithm 2 ADMM [12]
1: procedure L1L1 SLP ADMM

2: Input: x, P , γ, K, ε
3: Output: a
4: y, z = 0(N+2∗P )×1; Iter = 0;
5: Rx = autocorrelation(x);
6: aγ = levinsondurbin(Rx);

7: H =

([
−γITP×P XT

]T )+

8: while do{En > ε && Cn > ε && Iter < K}
9: a = aγ −H(y − u);

10: e = Ax;
11: z =

[
γ aT eT

]T
;

12: y = Sm(z + u, ρ);
13: u← u + z− y;
14: En = ||e||1; Cn = ||a||1;
15: Iter ← Iter + 1;

16: a = y1:M/γ;
17: Return

Where Sm(x, y) is a soft thresholding operator and ρ is augmented
Lagrangian parameter.

In this iterative procedure, the `1-norm of the residual is decreased
and the HOSpLP coefficients are made sparser by every iteration.
As such, the HOSpLP coefficients at successive iterations are better
representatives of the data. Therefore, it seems straightforward to do
the restoration at each iteration by using the most recent HOSpLP
coefficients. A novel restoration method that merges the two algo-
rithms is shown in Algorithm 3. The number of Janssen iterations
at each iteration of the ADMM algorithm is limited to one as the
HOSpLP coefficients are fixed in each ADMM iteration.

A. Computational complexity

The computational complexity of Algorithms 1 and 3 are analyzed
(only considering multiplications) as follows. Let:

Γ = cost of each iteration of the ADMM algorithm.
• Algorithm 1: The most computationally expensive parts are the

following.
– Cholesky decomposition: efficient solution to matrix inver-

sion at line 10;
– Estimation of x̂: backward substitution after Cholesky de-

composition at line 10; and
– SLP coefficients calculation: at line 7.

It can be shown that the number of arithmetic operations
required by Algorithm 1 can be approximated by [18]:

L
M3

3
+ L

N2

2
+ LKΓ (3)

• Algorithm 3: By comparing with algorithm 2, it is seen that
the only additional computational cost is the estimation of the
data in each iteration. Therefore, its computational cost can be
approximated by:

K
M3

3
+K

N2

2
+KΓ (4)

Algorithm 3 HOSpLP-based missing sample estimation with merg-
ing of ADMM iterations and Janssen iterations

1: procedure ADMM HOSPLP ITER

2: Input: x, γ,K, ε,vm,vObs
3: Output: x̂
4: Θ =

∣∣vm11×N − 1M×1[1, 2, · · ·N ]
∣∣;

5: Φ = 0M×N ; x̂vObs = xvObs ; x̂vm = 0; Iter = 0;
6: Rx = autocorrelation(x);
7: aγ = levinsondurbin(Rx);

8: H =

([
−γITP×P XT

]T )+

9: while do{En > ε && Cn > ε && Iter < K}
10: a = aγ −H(y − u);
11: e = Ax;
12: z =

[
γaT eT

]T
;

13: y = Sm(z + u, ρ);
14: u← u + z− y;
15: En = ||e||1; Cn = ||a||1;
16: b =

[
1 −aT

]
A;

17: Φi,j = bΘi,j+1; ∀i, j : Θi,j > P
18: x̂ = −Φ−1

(1:M,vm)Φ(1:M,vObs)svObs ;
19: Iter ← Iter + 1;

20: Return

It is not straightforward to compare (3) and (4) as the number of
ADMM iterations, K, is not known a priori. The iteration can be
stopped if the sparsity of the residual and HOSpLP coefficients is
satisfied. Therefore, it is dependent on the norm of the residual and
of the coefficient vectors, which in turn are dependent on the missing
sample estimation done on line 18 of Algorithm 3. As such, the value
of K in Algorithm 1 and 3 is not necessarily the same. However, the
following observations can be made:

• K � L as experiments show that no more than 5 Janssen
iterations are necessary.

• The cost of the ADMM algorithm, the most computationally
expensive part, is decreased by a factor of L in Algorithm 3 as
compared to Algorithm 1.

IV. DATA USED, CLICK NOISE MODEL AND PERFORMANCE

MEASURE

A. Data

The experiments are conducted using the following four datasets
so that the results can be representative for any kind of audio and
speech data.

• Synthetic male and female vowels: ten vowels corresponding to
/beat/, /bit/, /bet/, /bat/, /part/, /pot/, /boot/, /book/, /but/, /pert/
synthesized using the Klatt speech synthesizer [19];

• Natural male and female vowels: same ten vowels from human
speakers from Western University of Michigan dataset [20];

• Male and female speech: ten different male and female speech
from Voxforge dataset [21]; and

• Music: ten excerpts consisting of male singing voice, female
singing voice and instrument from Sparse Models, Algorithms
and Learning for Large-scale data (SMALL) dataset [22].

In order to have comparable degradations among all signals, each
signal is normalized so that the maximum amplitude is 1.

B. Click Degradation Model

The onset, duration and amplitude of each click degradation is
usually modeled probabilistically. Different distributions for the time
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Table I
SIMULATION PARAMETERS

No Description Value
1 Sampling frequency 8 kHz

2 Frame size 256 samples

3 Conventional LP order 12

4 HOSpLP order 128

5 Dataset (counting male and female) 8

6 Cases for each data set 10

7 Number of file for each case 10

8 Number of simulations for each file 25

9 Click duration 0.25 msec - 10 msec

between impulses and for their amplitudes can be used [1], [4], [23].
As the main objective of this research was the study of the effect of
using HOSpLP for missing sample estimation of click-degraded audio
signals, the onset and duration of the click degradation was assumed
to be known a priori. The click degraded samples were artificially
replaced by zero-mean Gaussian noise.

C. Performance Measure

The performance of the proposed method can be assessed by
computing the signal-to-noise ratio (SNR) computed on the click
duration of the click-degraded fragment, defined by:

SNR(s, ŝ) = 10 ∗ log
||s||2

||s− ŝ||2 (5)

Where s is a vector of the original audio samples in the click duration
and ŝ is a vector of the estimated audio samples in the click duration.

V. RESULTS

The artificially click-degraded audio and speech data were restored
using iterative filtering by using HOSpLP and conventional LP
coefficients. The SNR is computed in the missing sample range
and averaged over all the audio data for each click duration. The
parameters used during the simulations are shown in Table I.

A. Impact of Regularization Parameter

The regularization parameter plays an important role on the ef-
fectiveness of the HOSpLP representation. Even though different
methods have been proposed to determine the optimum value, the
methods are optimized with respect to sparsity of the residual and
HOSpLP coefficients. They are not guaranteed to be optimal for the
application of missing sample estimation. Therefore, an experiment
was conducted by changing the regularization parameter between
0.01 and 10 to obtain the best γ value. Algorithm 1 was used to
estimate the click-degrades samples. The SNR values of the estimated
signal are averaged over all signal frames, and over all signals
belonging to the same data type. Fig. 1 shows a SNR comparison
of conventional LP and the proposed method for music data with
different regularization parameter values.

From Fig. 1 it is seen that HOSpLP-based missing sample esti-
mation with proper regularization parameter selection outperforms
conventional LP-based missing sample estimation. A regularization
parameter value between 0.1 and 1 is found to give consistently better
SNR results for all types of data used. After similar experiments
on all datasets, a regularization parameter of γ = 0.1833 was
selected. Comparison of HOSpLP-based missing sample estimation
with conventional LP-based missing sample estimation for all data
types and γ = 0.1833 is shown in Fig. 2. Fig. 2 shows that for all

Figure 1. SNR for different regularization parameters for music.

Figure 2. SNR for all data types with γ = 0.1833

the data types considered, the proposed method provides consistently
higher SNR over conventional LP-based missing sample estimation
except for very short or very long click duration. For very short click
duration, it is seen that both HOSpLP and conventional LP achieve
very high SNR. For click durations that are very long, in the range of
10msec and larger, the performance of the proposed method is seen
to asymptotically approach conventional LP which itself approaches
0 dB. This is expected as the number of observed samples in a frame
decreases with increasing click duration.

B. Effect of number of iterations on restoration performance

As the Janssen iterative algorithm does not have a stopping crite-
rion apart from an initially set number of iterations, the selection of
the number of iterations has significant impact on both the estimation
accuracy and computational time. To see the effect of the number
of Janssen iterations on the estimation performance of the proposed
method, Algorithm 1 was executed for different number of iterations.
A regularization parameter value of γ = 0.1833 was used in these
experiments as this value led to the best estimation performance for
the different datasets used. Fig. 3 shows the SNR of the proposed
method for different iterations for music.

From Fig. 3 it is clear that after the fifth iteration, virtually no
additional improvement in estimation performance is obtained. For
the other data types, similar results are obtained where no additional
SNR improvement is gained after the fifth iteration.

C. Combination of ADMM and Janssen iterations

The missing sample estimation performance of Algorithm 1 and
Algorithm 3 as compared to the conventional LP-based iterative
filtering for music, male speech and female speech with γ = 0.1833
is shown on Fig. 4. Algorithm 3 was implemented for different values
of regularization parameter and it was observed that the regularization
parameter γ has the same impact for both algorithms. In order
to compare the computational time taken by the two algorithms,
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Figure 3. SNR for different Janssen algorithm iterations for music data.

Figure 4. SNR of of algorithm 1 and 3 vs conventional LP for music data.

they were implemented in MATLAB and their execution time was
measured. Although the obtained result from this execution may not
be representative for all scenarios, it is an indicator of a comparison
between the two algorithms.

• Number of ADMM iterations:- When using Algorithm 3 the
number of ADMM iterations, K, is observed to be much lower
than Algorithm 1. This can be traced to the re-estimation of the
signal in each ADMM iteration cycle.

• Overall computational time:- Algorithm 3 is 3.95 times faster
than Algorithm 1.

Fig. 4 shows that Algorithm 1 achieves the best result albeit with
more computational cost. On the other hand, Algorithm 3 achieves
a result inferior to Algorithm 1 but better than conventional LP for
the three data types.

VI. CONCLUSION

This paper proposed the use of high-order sparse linear prediction
for missing sample estimation of click-degraded audio signals. The
proposed method achieved an improvement in SNR over conventional
LP-based filtering for all considered speech and audio data types. It
also investigated the effect of regularization on the performance of
the proposed method and found a regularization parameter value that
provided the best or very close to the best SNR for all data considered.
The paper also explored a possible computational time saving by
combining the iterative HOSpLP coefficient determination and the
iterative filtering operation. Even though the obtained computational
time improvement is not of the order of the HOSpLP number of
coefficients or the data size, an improvement of a factor of 3.95 was
obtained.

Even though the proposed method achieved better SNR over
conventional LP, the perceptual quality of the restored audio signal
should also be evaluated by scores from listening tests.
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