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Abstract—Small scale fading makes the wireless channel gain
vary significantly over small distances and in the context of classi-
cal communication systems it can be detrimental to performance.
But in the context of mobile robot (MR) wireless communications,
we can take advantage of the fading using a mobility diversity
algorithm (MDA) to deliberately locate the MR at a point where
the channel gain is high. There are two classes of MDAs. In
the first class, the MR explores various points, stops at each
one to collect channel measurements and then locates the best
position to establish communications. In the second class the
MR moves, without stopping, along a continuous path while
collecting channel measurements and then stops at the end of the
path. It determines the best point to establish communications.
Until now, the shape of the continuous path for such MDAs
has been arbitrarily selected and currently there is no method
to optimize it. In this paper, we propose a method to optimize
such a path. Simulation results show that such optimized paths
provide the MDAs with an increased performance, enabling them
to experience higher channel gains while using less mechanical
energy for the MR motion.

Index Terms—Rayleigh fading, correlated channels, spatial
statistics, diversity, robotics.

I. INTRODUCTION

Small-scale fading can degrade wireless communications

links and therefore diversity techniques must be used for

compensation. Now, a new class of diversity, referred to as

mobility diversity, has recently started to be developed in the

context of robotic communications. Algorithms implementing

this type of diversity are called mobility diversity algorithms

(MDAs) [1], [2].

MDAs operate by making the mobile robot (MR) measure

the channel gain over an exploration space in its close vicinity

and then, after having gathered channel gain measurements, it

determines the optimum position from which to establish com-

munications. The exploration space can be either continuous

or discrete.

Discrete exploration spaces consists of a finite number of

stopping points. In this case, the MR moves from one point

to the next one while stopping at each point. We will refer

to such MDAs as stopping points based MDAs. Different

configurations for such points have been proposed arbitrarily

(e.g., [2], [3]) but without any concrete theory behind their

choice. So, in [4] we have considered such a problem and

presented a method to design in a systematic way the spatial

configuration for any number of stopping points.

Now, continuous exploration spaces consist of a continuous

path. Here the MR moves along a continuous path without

stoppping until its end while collecting wireless channel

samples. We will refer to MDAs using this type of path

as “continuous mobility diversity algorithms” (CMDAs). In

[5] the authors implemented experimentally an MDA with

a circular exploration path. In [6] the authors implemented

experimentally a continuous path MDA where the MR samples

only at positions along the path that produce statistically

independent channels measurements. The authors explored a

circular path and also a path that produces samples arranged

into a hexagonal lattice contained inside a circle. In [7] the

authors implemented experimentally a continuous MDA with

linear, circular, spiral and random paths. Then in [8] we

proposed a continuous MDA with a linear path where the

length was optimized.

As can be seen, there is not still a general method to design

the exploration space for CMDAs. The interest behind the

development of such a method is that it can improve the

performance of CMDAs which can be more energy efficient

than the stopping point based MDAs. This is because when

executing a CMDA, the MR moves continuously without

stopping along the exploration path and thus taking advantage

of the momentum and so reducing the energy spent in motion.

In this paper, we consider the problem of a MR equipped

with a single antenna required to establish communications,

in a static environment, with a stationary node (also equipped

with a single antenna) through a wireless channel experiencing

small-scale fading. To take advantage of the fading, we design

a CMDA. As stated above, there does not yet exist a theory that

optimises the actual shape of the exploration path concerning

CMDAs. So, in this paper, for the first time we propose a

solution to such a problem.

Section II presents the model for the wireless channel.

Then in section III, we develop the CMDA and in section

IV we show the performance of the CMDA under different

conditions. Finally in section V, we present our conclusions.

II. SYSTEM MODEL

We assume that there is no line of sight between the

stationary node1 and the MR; that the signal transmitted

1The stationary node can be a base station or another MR which remains
stationary during the CMDA execution.
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by the stationary node to the MR is narrowband (i.e., the

bandwidth of the signal is significantly smaller than the radio

frequency carrier frequency used in the transmission); that

the MR’s environment is stationary (i.e., it does not change

with time during the execution of the MDA) and presents

a large number of scatterers (which produce the small-scale

fading2). Consequently, the wireless channel is time invariant

(at a given position) and exhibits Rayleigh3 flat (i.e., frequency

independent) fading [9]. Thus, the signal received by the MR

at time instant t, when located at p(t), is:

z(t) = h(p(t))× w(t) + n(t), (1)

where w(t) is the narrowband signal transmitted by the sta-

tionary node, n(t) ∼ CN (0, σ2
n) is the additive white Gaussian

noise generated at the MR’s receiver and h(p(t)) represents

the small-scale fading. We will assume Jakes’ model [10] for

the small scale fading term. This is a probabilistic model which

consists of h(p(t)) ∼ CN (0, 1) and the spatial normalized

correlation function given by:

r(p,q) = E [h(p)h∗(q)] = J0 (2π‖p− q‖2/λ) , (2)

where J0(·) is the Bessel function of zeroth order and first

kind, λ is the wavelength used in the RF transmission and

p,q ∈ R
2 are any two points in the 2-D space.

III. CONTINUOUS PATH MOBILITY DIVERSITY

ALGORITHM

The CMDA is a class of MDA in which the MR explores

without stopping a continuous path P of desired length Lp.

To do so, the stationary node which communicates with the

MR initially transmits a pure tone4 that allows the MR to

estimate the channel gain along the path being explored. We

will refer to this period of time as the exploration phase.

During this phase the MR follows a continuous path P while

estimating the wireless channel at sampling points5 uniformly

distributed all along the path. Then, once the MR reaches

the end of the path it determines the sampling point with

highest channel gain qopt ∈ S . Finally, the MR moves to

qopt to establish communications with the stationary node.

This second part will be referred to as the positioning phase.

Once the exploration phase finishes the stationary node acts

as a receiver and waits for a reply from the MR to establish

communication. In the next subsection we will show how to

optimize the shape of the continuous exploration path P for

the CMDA.

A. Optimum Exploration Path

In this section, we optimize the continuous path P for a

given desired length Lp. Since the objective of the CMDA is

2Note that small-scale fading is usually modelled as a random process in
the communications literature [9].

3Rayleigh fading means that the amplitude of the fading in the wireless
channel is Rayleigh distributed.

4Thus the (lowpass, complex equivalent) signal transmitted by the stationary
node w(t) = K (in (1)) where K is the amplitude of the received tone.

5We define S ⊆ P as the set of all sampling points.

to enable the MR to obtain a high channel gain at qopt, then

P must be optimised to maximise E[|h(qopt)|] which depends

on the set of sampling points S which in turn depends on the

shape and the length of the continuous path P as well as on

the spatial sampling rate used during the exploration phase.

Although an analytical expression for E[|h(qopt)|] cannot be

obtained as a function of the continuous path P , we can still

optimize the path after we discretize it. To do this, we define

the set of path points DN = {dj}Nj=1 (not to be confused with

the set of sampling points S) associated with the following

constraint:

‖dj − dj+1‖2 = Lp/(N − 1), j = 1, 2, · · · , N − 1. (3)

Note that, for any given continuous path P with length Lp and

a sufficiently large value N , there exists a set DN with the

constraint (3) and some interpolation such that I {DN} ≈ P
.Here I {DN} is a proper interpolation of the set of points

DN . Therefore, the set of points DN can be thought of as the

discretized version of the continuous path P which is obtained

by interpolation of the points in that set. So, to optimize the

continuous path P we first optimize the set of path points6

DN and then apply a proper interpolation.

The set DN is optimized to maximize E[|h(qopt)|] with

qopt ∈ DN . Mathematically this problem is similar to the

optimization of the stopping points configuration which was

solved in [4] by minimizing the amount of correlation among

the wireless channels at the different stopping points. So, we

use the same approach here to optimize the path points:

min
ψ1,ψ2,··· ,ψN−1

N∑
m=1

N∑
n=1

J2
0

(
2π‖dm − dn‖2

λ

)

s.t.

‖dj+1 − dj‖2 =
Lp

N−1 , j = 1, 2, · · · , N − 1,

�{dj+1 − dj} = ψj ∈ [0, 2π), j = 1, 2, · · · , N − 1.
(4)

The first constraint in (4) comes from (3) and the angles ψj

are the only independent variables7 which define the shape

of DN . Now, since the optimum continuous path P will be

derived by interpolation from the set DN which is optimized

to minimize the correlation among the channels at DN , then

we will refer to P as the minimum correlation path (MCP).

Proposition 1. For Lp/λ > z0, where z0 is the smallest value
of z that satisfies J2

0 (2πz) = 0, the MCP is the straight line
path.

Proof. The function J2
0 (2πx) is decreasing for x ≤ z0. Then,

if Lp/λ ≤ z0 the norm ‖CN‖2F is minimized when ‖dm −
dn‖2 is maximized for all n,m. This occurs when ψj = ψ1

for all j = 1, 2 · · ·N − 1. Hence, when Lp/λ ≤ z0, (4) is

solved when all the path points DN lie on a straight line.

6Note that we do not use the sampling points S for this optimization in
order to decouple this process from the spatial sampling rate.

7Since only the shape of the path matters, the angle ψ1 can take any value
without eliminating any solution in (4).
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When Lp/λ > z0 the cost function in (4) becomes non convex

and presents multiple minima. But since the optimization

variables are bounded angles we can solve (4) numerically

using simulated annealing [11].

The interpolation of the path points DN can be implemented

using splines [12] to obtain the continuous exploration path P .

We want the MR to be able to move through the continuous

exploration path without stopping until it reaches the end of the

path. This is because moving continuously without stopping

along the path is more energy efficient than stopping various

times along the path. To achieve this, the continuous path

P should be significantly smooth. So we use second-order8

splines to perform the interpolation of the path points DN to

obtain P . The parametrized function for the continuous path

P is then obtained by:

g(s) =

{
Πj(s− j), ∀s ∈ [j, j + 1), j = 1, 2, . . . , N − 1
ΠN−1(1), otherwise

(5)

where s ∈ [1, N ] is a free parameter and Πj(s) is a two-

dimensional second-order polynomial vector satisfying the

following constraints:

Πj(1) = Πj+1(0) = dj+1, j = 1, 2, · · · , N − 2 (6)

dΠj(s)

ds

∣∣∣∣
s=1

=
dΠj+1(s)

ds

∣∣∣∣
s=0

, j = 1, 2, · · · , N − 2 (7)

Π1(0) = d1, ΠN−1(1) = dN . (8)

The constraint (6) ensures the continuity of the exploration

path; constraint (7) ensures the smoothness of the exploration

path9 P; and (8) ensures that the starting and ending points

of the exploration path P are d1 and dN respectively.

Now, Lp (see (3)) is the desired length while L′
p is the actual

length of the continuous exploration path P and is given by

L′
p =

∫ N−1

0

∥∥∥dg(s)
ds

∥∥∥
2
ds. As a consequence, with exception

of the linear path, L′
p is slightly greater than Lp.

In Fig. 1 we observe how the shape of the MCP changes

as Lp increases. We would like to make it clear that as Lp

increases, solving (4) becomes increasingly difficult since the

number of local minima increases. So, in this paper we have

solved (4) only up to Lp = 1.8λ.

Finally, regarding the exploration sense of the path P (i.e.,

which ends of the path constitute the starting and the ending

points) it only affects the average distance travelled during the

positioning phase (i.e., the average distance from the ending

point to qopt). To reduce this distance, we choose as ending

point the point from {d1,dN} that minimizes its average

distance to the path points DN .

8Second-order splines are sufficient to allow the MR to traverse the
continuous path P with continuous velocity and without needing to stop due
to abrupt direction changes.

9This will allow the MR to traverse this path from its starting until its
ending points without having to stop and hence making the process more
energy efficient.
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Fig. 1. Optimized continuous path P for N = 25, λ = 14.02 cm
and different values of Lp. The start point d1 and the end point dN are
represented with a circle and a square respectively.

B. qopt Determination and Channel Estimation

The main advantage of the CMDA with respect to stopping

points based MDAs is that it takes advantage of the MR inertia

(by stopping only at the end of the path) to reduce the energy

spent in motion. But as a consequence, it can only take a single

wireless channel measurement per sampling point and thus it

is more vulnerable to noise compared to the stopping points

based MDAs. To compensate for this, when the exploration

phase is over, the noisy signals received during the exploration

phase must be smoothed to obtain good wireless channel

estimates to determine qopt. Hence, the channel estimation

is done using the following smoother:

ĥs(p(ts(k)),Sk(d)) =
∑

j∈Sk(d)

ak,jz(ts(j)) (9)

where ts(k) is the kth sampling instant10; Sk(d) is the set

of all integers j that satisfy ‖p(ts(k)) − p(ts(j))‖ ≤ d;

and ĥs(p(ts(k)),Sk(d)) is the estimate for h(p(ts(k))) us-

ing the measurements collected during the sampling instants

{ts(j)}j∈Sk(d).

By using the appropriate value of d in Sk(d), the MR will

only use channel measurements that are highly correlated with

h(p(ts(k))) and neglect the rest of those with low correlation,

thus reducing the computational load of the estimation process.

Finally, the coefficients ak,j of the smoother are optimized

such that the mean square error of ĥs(p(ts(k)),Sk(d)) is

minimized. Once the MR has estimated the wireless channels

10Sampling instants are chosen so that the spatial samples are uniformly
distributed along the path P and so the temporal sampling rate is not uniform
in general.
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at all sampling points, it selects qopt as the optimum sampling

point (i.e., with the highest estimated channel gain). This

concludes the development of the CMDA.

IV. SIMULATIONS

In this section, we present simulation results to gain more

insight into the CMDA. For the simulations setup, we select

λ = 14.02 cm corresponding to an RF of 2.14 GHz which is a

common frequency for mobile wireless communications. For

comparison purposes, we consider the same MR model with

the same parameter values used in [4].

First, we would like to highlight the benefits of executing the

CMDA with the MCP derived through the method developed

in section III-A. To do this, we select a desired distance11

between sampling points of Δ = 0.05λ. It was shown in [8]

that this is sufficient to obtain the maximum channel power

from each path under noiseless conditions. For the design of

the paths we used sets of N = 25 point paths.

Fig. 2 shows the performance12 of the CMDA when the

MCP (developed in this paper) is used to compare the CMDA

with a linear path (LP) and a circular path (CP). Clearly, for

L′
p ≤ 0.6λ, the MCP takes the form of the LP. For higher

values of L′
p, the CMDA using the MCP outperforms the

CMDA using LP both in terms of channel power obtained

and in terms of the mechanical energy consumed. Although

the performance improvement by using MCP instead of LP

is small in terms of channel power gain, we note that in

terms of mechanical energy the advantage of using the MCP

is significant. This is because, due to its geometrical proper-

ties, the LP is the path that maximizes the average distance

between its end point and the rest of the sampling points.

By comparison, the MCP requires the MR a shorter distances

during the positioning phase due to its curvatures, see Fig.

1. Nevertheless, when comparing the MCP with the CP,

we observe (refer to Fig. 2) that both the CMDA using

the MCP and the CMDA using the CP have, for practical

purposes, almost the same performance in terms of mechanical

energy. However, in terms of channel power obtained, the

CMDA using the MCP has a significantly better performance

compared to the CMDA using CP.

Clearly, these results show that the MCP has both the LP

advantages in terms of channel power and the CP advantages

in terms of mechanical energy. Hence, this enables the MDAs

using the MCP to be more efficient compared to those that

use either the LP or CP.

Fig. 3 shows the channel power obtained by the CMDA for

SNR = 10 dB versus different values of the d parameter in

(1). The mechanical energy is not shown in this case since

under these noisy conditions it is exactly the same as the

one shown under the noiseless conditions in Fig. 2. Note

that parameter d determines the number of samples required

11The number of sampling points is M =

⌈
L′

p

Δ

⌉
+ 1 where Δ is the

desired distance.
12Under noiseless conditions to isolate the effect of the selected path in the

performance of the CMDA.
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Fig. 2. (left) The E[|h(qopt)|2] quantity for different continuous paths
and lengths under noiseless conditions for Δ = 0.05λ; (right) Mechanical
energy consumption for different continuous paths and lengths under noiseless
conditions for Δ = 0.05λ.
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Fig. 3. E[|h(qopt)|2] for different continuous paths, lengths and values of
d with SNR = 10dB and Δ = 0.05λ.

for the channel estimation. First, we select d = 0.3828λ. To

estimate the channel at p(ts(k)), the MR uses the samples at

the sampling points that are closer to p(ts(k)) than the min-

imum distance at which the channel correlation is zero (i.e.,

0.3828λ). However, in the second case we select d = 0.3λ
resulting in the MR using only measurements at sampling

points whose channel has a correlation higher than ≈ 0.3 with

the channel to be estimated. This leads to a reduced number of

samples used for each estimation and hence the computational

load for the MR. However, the effect of the samples reduction

on the channel power obtained by the execution of the CMDA

is negligible as observed in Fig. 3.

Finally, we compare the performance of the CMDA with

a MDA based on stopping points. In Table I, we show the
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TABLE I
MDMTA SIMULATION RESULTS.

Number of stopping points 3 4 5
E[Emech] 0.0549 0.1458 0.2753

E[|h(q2
opt)|] 1.8301 2.0675 2.2501

performance of the MDA based on stopping points presented13

in [4] and using the optimum geometries obtained in that

article. The algorithm parameters are selected in such a way

that the channel power is maximized. Similarly, we simulate

this MDA with the wavelength, the MR and the execution time

considered in here such that a fair comparison with the CMDA

can be made. From Fig. 2 and Table I, we observe that for

a given amount of mechanical energy used by the MR, the

CMDA can provide higher channel power compared to the

MDMTA. However, the CMDA requires less MR mechanical

energy in order to yield the same channel power.

V. CONCLUSIONS

In this paper, we have considered the problem of the shape

optimisation of a continuous path for a given MDA and for a

specified path length. The optimum path (MCP) is shown to

maximize the channel power achievable via the CMDA given

a fixed path length. This has been corroborated by simulations.

When compared to the linear and the circular path, the MCP

has shown to exhibit the advantages of both paths without

their corresponding drawbacks. We have also demonstrated

that for a small desired distance, the MCP takes the form of a

linear path. Finally, we have shown that the CMDA with the

MCP can be more efficient than MDAs using stopping points.

Future work will explore and develop adaptive continuous

paths enabling higher channel gains output.
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