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Abstract—In order to personalize the behavior of hearing aid
devices in different acoustic environments, we need to develop
personalized acoustic scene classifiers. Since we cannot afford to
burden an individual hearing aid user with the task to collect a
large acoustic database, we aim instead to train a scene classifier
on just one (or maximally a few) in-situ recorded acoustic
waveform of a few seconds duration per scene. In this paper we
develop such a ”one-shot” personalized scene classifier, based on a
Hidden Semi-Markov model. The presented classifier consistently
outperforms a more classical Dynamic-Time-Warping-Nearest-
Neighbor classifier, and correctly classifies acoustic scenes about
twice as well as a (random) chance classifier after training on
just one recording of 10 seconds duration per scene.

I. INTRODUCTION

The acoustic conditions around hearing aid (HA) users
generally change multiple times throughout the day, e.g., HA
users may move from and to their home, car, office, grocery
store, subway train, etc. Oftentimes the preferred values for
the HA tuning parameters depend on the acoustic context. Cru-
cially, the set of acoustic scenes that drive preferred parameter
settings differs across the HA user population. As a result,
there is a need for a personalizable acoustic environment
classifier in a modern hearing aid device. Since we want to
inflict as little burden as possible on the end user, we aim to
build an acoustic environment® classifier that can be trained
under situated (in-situ) conditions by a HA user who only
records a single (or maximally a few) example(s) of a few
seconds in duration of any new environment.

Aside from the need to use very little training data, our
application-in-mind (hearing aids and other wearables such as
hearables) implies further constraints on the classifier. Firstly,
in order to perform well on a recognition task for which
only few labeled examples are available, the method needs
to be based on strong inductive biases. These biases can
come from several sources and in different forms. Notably,
they can either be explicitly represented in model structure
or they can come from a meta-learning procedure. Since our
application is intended to execute in-situ on devices with
small computational resources, we do not favor a recognition
model that relies on computationally demanding meta-learning
methods. Therefore, in this paper we focus on strong model
assumptions that reflect our knowledge about properties of
acoustic signals.

*We use the terms “environment”, “context” and “scene” as synonyms in
this paper.
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Another design consideration relates to the desire to share
computational resources by multiple functional modules in
low-power devices. For example, a noise power estimator
inside a hearing aid algorithm may be used both for noise
suppression and inside a scene classifier. This notion of sharing
computational results sits well with a “generative probabilistic
modeling” approach to classification. In this approach, all tasks
(including scene classification) are formulated as probabilistic
inference tasks on a generative model. This approach supports
adding new inference tasks for alternative applications on
the same generative model. As an additional advantage, the
generative probabilistic modeling approach also facilitates
a fast iterative design approach to the development of the
scene classifier, since probabilistic inference is in principle
an automatable task with a steadily improving toolset, e.g. [1]
and [2].

In short, in this paper we develop a generative probabilistic
model (based on a hidden Semi-Markov model (HSMM)) for
personalizable acoustic scene classification that is suited to
be executed under in-situ conditions on low-power devices.
We train the HSMM classifier by a single observation of 10
seconds duration per acoustic environment. The HSMM model
is equipped with strong biases in the form of priors and domain
knowledge that are embedded in the model structure.

The performance of the proposed system was evaluated
on a 2017 version of a benchmark dataset [3]. Our model
consistently beats a baseline Nearest-Neighbor classifier with
dynamic time warping alignment. Adding more training ex-
amples gradually improves the recognition accuracy.

II. RELATED WORK

Learning from few examples is a relatively unexplored prob-
lem for acoustic scene classification. We shortly recapitulate
some relevant studies.

a) Supervised learning from small datasets: Most ex-
isting studies concern the problem of learning from a small
labeled dataset in context of k-shot learning. The k-shot
learning problem statement assumes access to a big set of
(possibly unlabeled) data. The data set is used to infer shared
properties of exemplars of different categories in order to
speed up learning from previously unseen object categories.

Different techniques for k-shot learning have been success-
fully employed for such tasks as image recognition [4], [5],
generative modeling [6], and reinforcement learning [7].
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Few works appear to relate learning from few examples
to acoustic modeling. [8] describes a particularly relevant
application to one-shot learning of speech concepts. Proposed
hierarchical generative model trained on large Japanese and
English speech corpora almost matches human performance
in recognizing new words in both languages.

b) Acoustic scene modeling and classification: With the
recent surge of interest in deep learning systems, many neural
network-based models have been developed for acoustic scene
classification, e.g., [9], [10], [11]. These networks usually
require a very large set of trainable parameters, which is not
compatible with our objective to train on a very small data
set. Moreover, the computational load of neural network-based
classification often exceeds the resources of wearable devices.
Alternative (“strong” model-based) classification methods for
this problem have also been investigated, e.g. [12]. For our
application it is important to keep feature extraction pipeline
as simple as possible, which is usually not the case for
these methods. Our model shares the design philosophy of
the strongly-biased generative probabilistic acoustic model
proposed by Lee and Glass [13], but the model specifications
details are different (as well as the application).

III. PROBLEM STATEMENT

Let X be a set of sequences and C a finite set of class
labels. A sequence x; is an ordered tuple of observations:
x; = (Ti1,Ti2,...,T;7) € X. We assume to have access
to a training set of (in-situ obtained) labeled sequences
D = {(zj,¢j)}, where z; € X and ¢; € C. The data set
D contains M € NT sequences for each class ¢ € C.

The task is to build a classifier f : X — C that is able
to correctly classify unseen sequences from classes C, using
information that is contained in D. Since in our application
the dataset has to be obtained under in-situ conditions, we will
have a preference for very low values of M.

IV. MODEL SPECIFICATION

In this paper we use a generative probabilistic modeling
approach, which requires specification of a joint probability
distribution p(z, z, ¢, f]m) over the observed variables z, latent
states z, latent classes ¢ and model parameters 6 (and m
is a label for the model choice). After the model has been
specified, all needed tasks, e.g., parameter estimation and
classifier execution, can then be formulated as inference tasks
on this model. Omitting the conditioning on model m, we
choose a model that factorizes as

p(z,z,¢,0) =p(x,2(0,c)- p(flc) - p(c)
—_— —~— =~

dynamics parameters scene prior

Our choice of dynamics model is motivated by the hierar-
chical nature of real-world audio signals. An acoustic scene
can be represented as a sequence of changing meta-states
(clatter of plates, keyboard clacking, etc.). At the same time,
the duration of staying in the same state might be different
for different states. For this reason, having a mechanism that
explicitly models these durations might be useful. In this paper,
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we use the Hidden Semi-Markov Model (HSMM) [14] as the
dynamics model since it appears to satisfy our requirements
for dynamic modeling of natural acoustic sounds. For instance,
in an HSMM dynamic acoustic model the signal components
evolve over multiple timescales: on the order of milliseconds at
the (bottom) observation level, up to hundreds of milliseconds
at the (middle) hidden segmental state level to seconds and
minutes at the (top) scene level.

A. Hidden Semi-Markov Model

In an HSMM, a sequence z is parsed into segments where
a hidden segmental state remains constant over a variable
number of time steps. Let ¥ € N* be a segment counter. Each
hidden segmental state z;, € {1,2,...,S} emits a variable
number (dy) of observations x¢,, ¢, +1, .- ., Tt,+d,—1, Where
dj, is drawn from a state-specific distribution. Since the jth
segment contains d; samples, the first sample of the kth
segment has time index ¢ = 1+ 25;11 d;. The dynamic part
p(x,d, 2|0, ¢) of the generative model is formally described by

p(x,d, 2|0, ) = pe(x|z,d, 0) pe(d]z, 0) pe(2]6)

K tr+dr—1
:pc(ZO) H H De (th ‘Zkya)
k=1 f—ty T

observation
“Pe (di | 28, 0) pe (25 | 21-1,0) -

segment duration

segment transition

The Hidden Semi-Markov model consists of three key parts:
an observation model p.. (z; | zx, #), a segment duration model
pe (di | 21, 0) and a segment transition model p.. (2 | zx—1,0).
The flexibility provided by the model allows us to choose
the distributions according to our assumptions. We use a
Poisson distribution to model the durations, a categorical state
transition model (similar to regular HMMs) and a full-rank
multivariate normal distribution for observations:

p(z,d, 2|0, c) =

K tr+dr—1

Pe(20) H H N (g;t ’ M(Q%))E(Cyzk))

k=1 t=ty,

observation

- Pois (dk ‘ /\(C’z’“‘)) Cat (zk W(C’z""*l)> .

segment transition

segment duration

In this model description, contextual information such as
scene index c¢ and segmental index z is collected in su-
perscripts. Temporal indices such as time step ¢ and seg-
ment counter k are denoted in subscripts. For instance,
Cat (2, | w(»*5-1)) indicates a categorical distribution where
the entry at index (k — 1,k) in the transition matrix specifies
p(zr|zp_1) = 7(©#-1) We assume that the diagonal elements
of the transition matrix are equal to zero in order to avoid self-
transitions between states. If we allow self-transitions, duration
distributions do not model state duration statistics directly.
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Fig. 1.

We specify the parameter priors by

)\(c,zk) ~ Gam (a(c,zk)’ b(c,zk)) ,

pe) o A (m<c,zk>, V(c,m) :
s(ez) -1 (q,(c,zk)’g(c,zk)) ’
r(ez-1) L Dir (¢<c)) ’
with ¢(© ~ Gam (a(c),ﬁ(c)) .

Finally, we choose a uniform categorical distribution for the
prior over scenes, which makes all acouetic scenes a priori
equally likely, i.e., p(c) = Cat g \CI b |C| . A graphical
representation of this model is depicted in Flgure 1.

B. Dynamic Time Warping

We will use a dynamic time warping-based model as a
reference acoustic context learning model. Dynamic time
warping (DTW) [15] is a dynamic programming-based method
that aligns two sequences by warping the temporal dimension.
DTW alignment is usually used as a preprocessing step for
calculating a distance measure between two sequences if we
are not interested in dissimilarities that are caused by temporal
warping of the sequences. For example, this method may
be used to measure the similarity (“distance”) between two
persons in how they ride a bicycle, regardless of the bikes’
speeds and possible accelerations/decelerations. The Nearest-
Neighbor (NN) method in conjunction with DTW alignment
generally performs well on time series classification tasks, as
reported in [16]. This qualifies the DTW-NN method to be
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A Bayesian network graph of the HSMM-based acoustic classifier that is discussed in this paper.

considered a worthy adversary in the task of acoustic context
classification from a small training data set.

V. METHODS

In generative probabilistic models, all tasks are formulated
as inference tasks. We use Gibbs sampling derived in [17] to
perform inference for classification and learning.

a) Learning: During learning, our goal is to infer the
posterior distribution p(f|c, D) for the model parameters for
each class. We learn class-specific parameter distributions from
labeled examples in D by

p(0le, D) x
S 1] pl==dzc=c¢l0)p@lc). 1)
z,d (zj,c;)€D

b) Classification: The Bayesian solution points to infer-
ring the posterior class probability p(c|x = z*, D) for a given
sequence x*. We then assign the class label ¢* by maximizing
the posterior probability:

¢ = argmaxp (c|lr = z*,D). ()
ceC

In our case the evaluation of p (c|z = x*, D) is equivalent
to the evaluation of the likelihood p (z = x*|c, D), since all
classes have same a priori probability p(c).

VI. EXPERIMENTAL EVALUATION

A. Dataset preparation

For the experimental evaluation we used the “TUT database
for acoustic scene classification and sound event detection”
(version 2017) that was collected by researchers at Tampere
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TABLE I
CLASSIFICATION ACCURACY

Number of training examples
1 2 3 4 5
HSMM 0.514 £0.137 | 0.597 £0.089 | 0.636 +0.084 | 0.666 = 0.069 | 0.718 & 0.080
DTW-NN | 0.443 £0.132 | 0.470 £0.101 | 0.489 £0.088 | 0.551 +£0.081 | 0.522 4 0.092

University of Technology [3]. The TUT database contains
recordings of 15 different acoustic scenes. The scenes in the
database cover a wide variety of real-world environments and
can be split into the meta-categories “inside”, “outside” and
“inside a vehicle”.

The TUT database contains a development database of 312
audio files (10 seconds duration each) for each acoustic scene
as well as an evaluation dataset of 108 recordings (also 10
seconds each) for each scene.

In order to prepare training and evaluation datasets, we
first randomly selected 4 scenes from the TUT database,
comprising the set C. The training dataset Di,;, was formed
by randomly drawing M exemplars (waveforms plus scene
labels) from the TUT development database for each acoustic
scene in C. In order to test the performance of the classifier,
an evaluation set XLy, was formed by collecting all examples
from scenes C from the TUT evaluation database.

B. Data preprocessing

For each audio file, we calculated 20 Mel-Frequency Cep-
stral Coefficients (MFCC), plus delta and delta-delta deriva-
tives (totaling 60 coefficients) for each window of 40 ms du-
ration with 20 ms hop length. These coefficients aggregate the
behavior of the signal at the order of tens of milliseconds, thus
extending the hierarchy in the model with an additional layer.
Since the map from waveform samples to MFCC coefficients
is deterministic, we used the MFCC sequences (rather than the
raw waveforms) as observations for the (HSMM and DTW-
NN) classifiers.

C. Model priors and hyperparameters

TABLE II
PARAMETER PRIORS FOR EXPERIMENTAL EVALUATION

Parameter Prior distribution
A(e:zk) Gam (60, 2)
u(e2k) N (0,100 = I)
»(ezk) W-1(0.25,62)
r(©2k—1) | Dir (¢(C))

() Gam(1.0,0.25)

For all HSMM-based classifiers, the cardinality of the set of
segmental states was set to .S = 20. See Table II for a detailed
list of experiment-specific prior settings.

D. Evaluation protocol

The HSMM classifier was trained on dataset Dy, by
executing Eq. 1. Performance assessment was executed by
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Fig. 2. Classification accuracy as a function of number of training examples
(£1 standard deviation error bars over 20 repetitions).

classifying the evaluation dataset ALy, by Eq. 2. We used the
fraction of correctly classified scenes as score function,

|Xeual|
I(cf = ¢),
=1

(") = &
accuracy(c®, c Koo
where I(s) =1 if s = true, and otherwise I(s) = 0.

We evaluated the classifier for each M € {1,2,3,4,5}.
In order to get evaluation results that do not depend on a
particular draw of scenes from the TUT database, we repeated
the entire evaluation process 20 times and report both the
mean value and standard deviation of the classifier score.
The evaluation of the DTW-NN classifier followed the same
procedure. Algorithm 1 describes our evaluation protocol in
pseudo-code.

E. Evaluation results

The HSMM classifier achieves 51% of classification accu-
racy in a one-shot learning mode, see Fig. 2 and Table I.
The Nearest-Neighbor classifier with DTW distance achieves
slightly over 44%. Adding more training examples gradu-
ally improves the performance of both classifiers, while the
HSMM classifier remains clearly preferable over the DTW-NN
classifier. When presented with 5 labeled recordings for each
class (20 recordings total), the developed HSMM classifier has
reached an accuracy score of 0.71.
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Algorithm 1 Evaluation protocol

Require: Datasets TUT-DEV, TUT-EVAL
for all M € {1,2,3,4,5} do
for n=1..20 do
C := sample 4 categories from TUT-DEV
Dyyqin == sample M exemplars from each class in C
Xeval, Ctrue = all examples of classes C from
TUT-EVAL
for all classifiers f € {HSMM, DTWNN} do
train classifier f on Dypqin
Cpred ‘= evaluate classifier f on Xcyq:
scores[M][n][f] == accuracy(cpred; Ctrue)
end for
end for
end for
return scores

VII. DISCUSSION

The proposed probabilistic classifier for acoustic scenes
correctly recognizes the acoustic environment from a single
training example in around a half of the cases (see Table I).
This is about twice as good as a (random) chance classifier.

The classifier performance scores are affected by the fact
that the evaluation datasets often contained similar categories.
For instance, to successfully distinguish between a library and
an office scene from a single recording of 10 seconds is a very
difficult problem. At the same time, an error of this kind might
not result in worse performance in an application environment
since a hearing aid user may prefer the same settings for audio
signal processing in both library and office environments.
We consider the hypothesis that the currently described in-
situ personalizable HSMM-based classifier already leads to
improved hearing aid user satisfaction scores as a topic for
further investigation.

VIII. CONCLUSIONS

In-situ learning of an acoustic classifier from single (or few)
short recordings of acoustic waveforms is a very challenging
task. In this paper we presented a generative probabilistic mod-
eling approach, specifically based on a Hidden Semi-Markov
Model, to the design of a scene classifier that can be trained
on very few recordings. We showed that the proposed HSMM
classifier consistently beats a reference DTW-NN classifier
and scores about twice as well as random classification after
training on a single example per scene.
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