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Abstract—Breathing monitoring by non-contact video pro-
cessing has been the subject of recent research. This paper
presents an advanced video processing algorithm for reliable
Respiratory Rate (RR) monitoring based on the analysis of
local video variations and a motion magnification method. This
novel algorithm improves over the existing solutions in terms
of estimation accuracy and excision of large body movements
unrelated with respiration. Applications to adults and infants
are presented to demonstrate the performance of the proposed
algorithm and compare it with previous work.

I. INTRODUCTION

Respiration is an important physiological task and plays
a fundamental role in human body functions. It consists
in repetitive movements, performed by specific muscles, to
“import” oxygen (inhalation) and “throw out” carbon dioxide
(exhalation). The Respiratory Rate (RR) is one of main vital
signs and is defined as the number of breathing cycles in a
time unit. Changes in the RR need to be carefully monitored,
as potential signs of deterioration of health condition.

Recent research has addressed non-contact and non invasive
monitoring systems of vital signs [1]; in this scenario, video
processing-based methods are very attractive [2]-[4].

Body movements can be exploited for the analysis of the
breathing effort. Since tiny movements are involved, mo-
tion magnification techniques [3] and analysis of pixel-wise
variations [5] were exploited. These systems are among the
first to present reliable video processing schemes to monitor
effectively the RR. However, the work in [3] is sensitive to
large body movements and scenario variations; moreover, in
various conditions, it may estimate a RR doubled respect to
the real one. The method in [5] requires pixel-wise analysis
of video streams and may be computationally inefficient for
possible real-time applications.

In this paper, a new method for non-invasive measurement
of the RR by video processing is proposed to improve over the
previous approaches. The main contribution is an algorithm for
the extraction of motion information, relying on a recent and
effective subtle motion enhancement technique [6]. Moreover,
the system increases efficiency by selecting suitable regions
mainly related with breathing movements and integrating a
smart method to limit the interference due to environmental
changes, other people/medical staff or large movements of the
framed person/patient. Results are presented considering two
different conditions: first the method is tested on healthy vol-
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unteers in a controlled environment; then, preliminary results
on hospitalized newborn patients are proposed.

The remainder of the paper is organized as follows. In
Section II, the algorithm for breathing motion information
extraction is described. In Section III, validation of the method
and performance on RR estimation are presented. Finally,
conclusions are drawn in Section IV.

II. VIDEO PROCESSING METHODOLOGY
FOR RESPIRATION ANALYSIS

Relying on the description of the breathing cycle introduced
in Section I, chest wall movements can be detected and
analyzed to monitor the respiration and estimate the RR.

Applying motion magnification to patient monitoring, the
method used for the detection of tiny breathing movements
of the system is inspired by [6]; moreover, it limits problems
related to large global movements introducing local motion
analysis based on Regions of Interest (ROI), with an approach
similar to the one presented in [5]. In Fig. 1, a diagram of the
proposed system is shown: the blocks and the involved steps
will be described in the following subsections.

Before describing the algorithm, useful notation is intro-
duced. A video stream acquired by a camera sensor is defined
as a multidimensional signal consisting of a sequence of digital
images with U7 x Us pixels acquired over time with a sampling
rate fs, equivalent to a period Ty, = 1/fs. Mathematically,
each frame at time instant n7, can be described as a discrete
function f[u,n] containing pixel intensity values for each
spatial coordinate u = (u1,u2) and having U; rows and Us
columns. For multi-chromatic videos, a proper number of color
channels has to be considered, depending to the sensor color
space [7]. In this work, videos are recorded by Red, Green
and Blue (RGB) cameras: to reduce the computational com-
plexity and simplify the notation, the performed processing
is based on a single-channel gray scale video, after proper
conversion [7].

A. Selection of Areas of Interest

The first step consists of the automatic selection of the
ROI in which the frame variations are related with breathing
movements. To this purpose, extraction of periodic features is
needed. A block of N frames of the original video f[u,n]
is analyzed; after estimating the common fundamental fre-
quency, the amplitude of the periodic component for each
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Fig. 1. Overview of the proposed video processing-based framework. The system includes: ROI identification and selection (A), breathing motion magnification

and detection (B) and, finally, RR estimation (C) of the framed patient.

pixel may be obtained. The matrix of estimated amplitudes
can be interpreted as a map describing the position of periodic
variations inside the video, where higher values correspond to
larger periodic components. For the details on this approach
to periodic features extraction, the reader is referred to [8].
Restricting to the context of respiratory monitoring, such areas
correspond to the ones where breathing movements cause main
variations in pixel intensities.

From this map, R areas with size W x W can be selected,
choosing the regions where the amplitude of the estimated
periodic variations are higher: in Fig. 1 this step is indicated
by part (A) and the algorithm for the extraction of the
ROI is described in [5]. The selection of ROI leads to the
extraction of smaller video streams, denoted as f,.[u, n], where
re{0,1,...,R—1}

B. Breathing Information: from Video to Motion Signals

The core of the proposed algorithm exploits the principles
of the advanced motion magnification system presented in [6]
for the extraction of breathing information. This corresponds
to the block (B) shown in Fig. 1; it is applied on each selected
ROI and composed of three steps: multi-scale decomposition,
phase-based motion magnification and extraction of signals
representing local movements.

The extraction of breathing information is performed in
the same way for each region f,.[u,n]. However, to simplify
the notation, in this subsection the method is presented on a
generic video f[u,n].

1) Complex Pyramidal Decomposition: Given a video
flu, n], it is first processed frame-by-frame to obtain a multi-
scale spatial decomposition based on a Laplacian pyramid [9].
Speciﬁcallz/, a single frame is decomposed into L images
{pe[u,n]} ez_ol with scaled resolution, called levels, represent-
ing different spatial frequency sub-bands. Then, an analytic
representation of the images is invoked.

As in one dimension (1D), the analytic signal and related
local amplitude and phase can be obtained through the Hilbert
transform [10]. A multi-dimensional generalization can be de-
fined, named monogenic signal, strictly related with the Riesz
transform [11]. The latter can be defined in the Fourier domain:
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in the two-dimension (2D) case, given the vector of normalized
angular frequencies w = (w;,ws), the transform can be
identified with the two components: H;(w) = —jw;/ ||w]]
and Hy(w) = —jws/ ||w]||, where || - || is the norm of a vector.
Given the input p,[u, n], the Riesz transform of the ¢-th level

can be expressed as
R {pufu ) = (1) = ) o

where h;[u] = F~1(H;(w)), i € {1,2}, * denotes 2D
convolution and the operator F~!(-) is the inverse 2D Fourier
transform.

r1,0[u, n]
ro,0[u, 1]

hi[u] * peu, ]
ho[u] * pelu, ]

Applying the Riesz transform on the levels
{0,1,..., L — 2} of the pyramid, the set of three elements
pm,Z[u7 ’I’L] = (pf [ua n]7 Tl,f[uv n]a TQ’Z[U, n]) (2)

is obtained and defined as the monogenic signal of the /-th
level. The set {pm,¢[u, n]}f:_o2 jointly with py_i[u,n| is
named as the Riesz pyramid.

Given the 2D monogenic signal of the /-th levels, local am-
plitude, phase and orientation can be respectively defined [12]

A= \Jo+ 7+ 75, ()
¢ = arctan ((\/m) /pz) (3b)
¥ = arctan (ra,4/71.0) (3¢)

where dependency on [u,n] is omitted for brevity. To solve
problems of sign ambiguity on phase and orientation, a
quaternionic representation of the Riesz pyramid can be ex-
ploited [13]. So, the monogenic triple in (2) can be represented
as the quaternion

qe[u, n] = pefu,n] +iryefu,n] + jragfun] + k-0 (4)

with imaginary units ¢, j and k and where, following quater-
nionic algebra, the amplitude in (3a) and the complex quater-
nionic phase [13] can be expressed as

(52)
(5b)

Ap = laell
i@ cos (Vg) + j esin (9g) = log (qe/ ||aell)
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where || - || now denotes the quaternionic norm, log(-) is the
logarithm of a quaternion and, as in (3), dependency on [u, n]
is omitted.

2) Phase-Based Motion Magnification: After the pyramidal
decomposition, amplification of small movements is needed.
It relies on a pixel-wise processing with the ability to process
local phases of each spatial sub-bands by temporal filters in
order to select, and then amplify, only motion of interest [14].

The first step consists of temporal filtering the local phase.
As the breathing movements are periodic with a repetition time
related with the age and health condition of the monitored
patient, a band-pass filter may be used to extract phase varia-
tions on frequencies of interest. To keep low the computational
complexity and the delay introduced by the temporal filter, a
first order Infinte Impulse Response (IIR) Butterworth digital
band-pass filter is employed. This is designed selecting proper
cut-off frequencies f.,; and feo, [10], named lower and
higher cut-off frequency, respectively, and with foo; < foo n-
The filter is applied on the phase computed at each level of
the corresponding Riesz pyramid.

To avoid issues on wrapped phase [13], the pixel-wise
temporal processing does not filter directly the local phases
as defined in (5a), but a cumulative sum of unwrapped
quaternionic phases: in this way, at the n-th discrete time the
following coefficients are computed

{bg (Ge[u, )

for n =0,
_ 1 (6)
log (qg[u,n]qé [u,n— 1]) forn=1,2,...

where the term q¢[u, n] = 35 EZ}H is the monogenic normal-

ized quaternion. As (6) for n > 0 represents the quantity

i (e[, n] = pefu,n —1]) cos(Je[u])+
J (¢e[u,n] = @e[u,n —1]) sin(J;[u]) )

phase difference: ¢} [u,n]

where the local orientation ¥¢[u] is supposed to be time
invariant, the cumulative sum of its terms is

isplf [u, m] cos(¢[u]) + gy [, n] sin (e [u]) @)
where the unwrapped phase is'
/! . /
e [u,n] = @o[u, 0]+ > @ilu k] forn=1,2,.... (9
k=1

The IIR temporal filter is now applied at every pixel of the
quantity in (8) to isolate periodic movements, obtaining the
two imaginary quaternionic components d,[u,n] cos(¢[ul)
and jd¢[u, n]sin(Y[u]).

The filtered quaternionic phase now defines the translation
in space, coherently with the selected temporal frequencies,
due to motion included in the video signal. The motion
information of the framed object is contained inside this phase.
Following the phase-based magnification approach in [14],
such a phase can be amplified to increase the translational
movement. To this purpose, the two imaginary components of

Loglu,n] = ) [u,n] mod 2.
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the quaternion containing the phase information d,[u, n] are
multiplied by a coefficient o > 1.

As discussed in Section II-B, the described method
is applied on each of the R selected ROI: therefore
R filtered and amplified quaternionic phase differences
i ady g[u,n] cos(V-[u]) and jad, [u,n]sin(d,[u]) are ob-
tained, r =1,2,..., R.

3) Regional Motion Information Extraction: Local filtered
and amplified cumulative quaternionic phases computed for
eachr € {0,1,..., R — 1} can vary with positive and negative
values depending on the direction of the local movement.
This can be assimilated to the Fourier shifting theorem [10],
in which a delay or an advance in time is closely related
to the sign of the phase shift in the frequency domain. As
ROI are employed, it is expected that the variations inside
them is almost coherent, namely there are not areas which
move in opposite directions. In this way, a reliable solution to
obtain signals describing the motion inside the ROI is based
on computing the spatial average of the local phase variations
as functions of time, which can be obtained as

4 | Woiw
yreltl = 37 > > adeilu,n)cos(¥,[ul)

| | W 10y
Yy 4ln] = W2 Z Z ady e[u, n]sin(d,[u))

wu1=0 us=0

where the dependency on r is now specified.

C. Data Fusion for Respiratory Rate Estimation

Once motion signals are extracted, an approach for RR
estimation is needed. The aim of the last part of the RR
analysis algorithm, denoted as block (C) in Fig. 1, is to
use data information from various regions and estimate the
principal periodic component: this method is reliable because
the fundamental frequency obtained from motion signals is
assumed to be strictly related to respiration. Moreover, the
algorithm is able to exclude ROI affected by large movement
not related to respiration, which can invalidate the estimation
of the RR. 4

Signals y;. ,[n] and y] ,[n] describe motion for each ROI
and on different levels of the Riesz pyramid for the two
imaginary quaternionic components. Such signals are expected
to be quasi-periodic as breathing is intrinsically a repetitive
movement whose frequency can vary over time. Assuming that
they are representative of the respiration cycle, it is possible
to group them in a matrix Y[n] with L rows and 2R column
defined as

Y[n] = [ Yin]diag (k) | Y/[n]diag (k) |  (11)

where

Y'[n] = [ ybln] vyiln] Yeoalnl | (12)

are the matrices for the two imaginary quaternionic compo-
nents with ¢ € {i, 7}, in which

yiln] = [ yrolnl  wraln] Yr,.—1[n] ]T (13)
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and kK = [koK1---kgr_1]' is the vector of binary param-
eters which includes/excludes ROI depending on the ab-
sence/presence of large motion.

With the introduced notation, a possible model of periodic-
ity for RR estimation may be defined as

Y[n] = C+ Acos (2rfoTsn + @) + Wn| (14)

where C are continuous components, {W{n|} are sequences
of independent and identically distributed (i.i.d.) zero-mean
Gaussian noise samples, A are amplitudes, fj is the common
frequency of the periodic movements, ® are temporal phases,
T, is frame sampling period and the addition of a scalar
to a matrix and trigonometric functions are applied element-
wise. A large motion avoidance system is applied extracting
a motion signal from the original ROI videos following the
method in [5]: if the r-th area includes large movements over
a heuristically chosen threshold, this area is excluded from RR
estimation. Following the generalized Maximum Likelihood
(ML) approach described in [8], data fusion can be exploited
and the estimation fo of the fundamental frequency on a
window with duration N7, can be obtained. The estimation
fo is defined as the RR of the monitored patient.

III. VALIDATION AND RESULTS

The introduced method is now validated and results on RR
estimation for adults and newborns are presented. A video
camera is placed in front of or laterally with respect to a
steady subject, framing the upper part for adults or the whole
body for newborns. At first, motion signals are compared with
references: accelerometric signal for adults and pneumogram
for infants. The employed hardware consists of Shimmer3
sensors by Shimmer Sensing™ placed on the chest of the
adult, whereas the pneumogram is recorded by an elastic belt
around the newborn’s chest. Motion signals are then compared
with a previously proposed method [3], here referred to as
Spatio-Temporal video-processing for RR Estimation (STRE),
showing significant improvement. Finally, performance in RR
estimation, also compared with STRE, is carried out.

In order to verify the ability of the proposed algorithm to ex-
tract signals strictly related with respiration, a comparison with
the reference signals is proposed. In Fig. 2(a) a 20 s window
of signal obtained by processing a video recording of an infant
is compared with the corresponding portion of pneumogram.
In Fig. 2(b) a signal of the same time duration extracted by
a video stream framing an adult at rest is compared with the
corresponding accelerometric signal. In both cases the video-
processing system shows an excellent agreement with the
signal employed as gold-standard. Differences on the reference
signals in Fig. 2 can be ascribed to the technologies employed
as gold standard and the age of monitored patient.

In previous works, signals describing framed movements
were obtained by analyzing frame variations with a Difference
of Frames (DoF) algorithm or proper IIR frame filtering, frame
thresholding and extraction of an average luminance signal [3],
[15]. These signals describe the “amount” of motion detected
inside the frames calculating the amount of the pixel intensity
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Fig. 2. Average local phase variations compared with the reference signals
for RR estimation: (a) a pneumogram of a newborn and (b) an accelerometric
sensor on an adult.

variations over time: this quantity is always positive and it is
unable to distinguish motions in opposite directions.

In Fig. 3(a) a comparison between the signal extracted by
the STRE algorithm and the signals y;. ,[n] and y] [n] on a
selected region near the chest of an infant breathing around
0.71 Hz is shown. The signal obtained with the STRE algo-
rithm exhibits periodicity: albeit inhalation/exhalation move-
ments are here partially distinguishable, for adult or different
camera locations they may be not, creating signals which de-
scribe faster variations with a halved repetition time. Using the
proposed algorithm, the inhalation/exhalation movements can
be clearly distinguished as the two “motion” signals yy. o [nT]
and yio[nTs] exhibit movements with opposite direction, as
highlighted by positive/negative values of the signals. This key
difference can be noticed also in the magnitude spectra of
the motion information signals, shown in Fig. 3(b). Although
a peak around 0.75 Hz is clearly visible in all spectra, in
the magnitude spectrum of the signal extracted by [3] (in
which the mean is removed for better visualization), peaks
corresponding to higher order harmonics near 1.4 Hz and
2.2 Hz are also included. These peaks, caused by the shape
of the signal, may be higher than the fundamental one and, if
exhibited also in other levels of the pyramidal decomposition,
may cause an error in the estimation of the RR. The extraction
of motion signals by the proposed algorithm solves this issue,
as the obtained signals are quasi-sinusoidal and reduce the
higher order harmonic peaks in the related spectrum, as shown
in Fig. 3(b).

For performance evaluation, two video sets of recordings
are considered: the first set consists of 4 videos of different
adults on a chair and regularly breathing with an overall time
duration of 20 min and 11 s; the second set consists of 2
videos of a newborn assisted in the Neonatal Intensive Care
Unit (NICU) of the University Hospital of Parma,” Italy, with
normal respiration and an overall time duration of 8 min and
16 s. The summary of parameters employed for the analysis of
the two sets is reported in Table I. As a remark, the estimation
of the RR is performed on temporal windows of duration

2 Analysis and use of patients’ biomedical signals and video recordings was
approved by the Ethical Local Committee.
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TABLE I
SUMMARY OF VIDEO TESTS AND PARAMETERS USED FOR THE ANALYSIS
Video No. Camera fs w [feo,ts Feo,h ] o NTs Interlacing Reference
set samples  resolution [Hz] [pixel] [Hz] [s] factor device
Adults 4 800 x 600 30 4 41 3 [0.19,0.9] 20 20 50% Accelerometer
Newborns 2 360 x 288 25 3 21 4 [0.3,1.1] 25 20 50% Pneumograph
x1073
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Fig. 3. Comparison (a) of signals yi,o [nTs] and yﬂ’o [nTs] with one extracted
by STRE and (b) corresponding magnitude frequency spectra.

NT; s and a proper interlacing factor.

Performance in RR estimation is reported in Fig. 4, where
for each video sample the Root Mean Squared Error (RMSE)
between the estimated RR and the reference one, normalized
to the Root Mean Square (RMS) value of the latter, is shown. It
can be noticed that the method here proposed is more accurate
in RR estimation in every test, in particular on adults: this is
due to the fact that STRE yields wrong estimations on adults
caused by the frequency doubling effect previously described.
In order to compare the accuracy of both algorithms without
accounting for this specific drawback, an idealized Genie-
Aided (GA) version of STRE is also considered, in which RR
estimates affected by frequency doubling are ideally corrected.

IV. CONCLUSION

In this paper, a video processing algorithm for non-contact
monitoring of the RR, has been proposed. The method, once
ROI have been selected, is able to process video streams
in order to obtain signals describing breathing movements;
this step is achieved relying on a recent phase-based motion
magnification algorithm. Then, RR is estimated applying a
signal fusion-based ML criterion, by automatically excluding
unreliable ROI affected by large motions or variations which
can hinder the RR estimation accuracy. The performance
in breathing signal extraction and RR estimation has been
analyzed by comparing with gold-standard devices and demon-
strating a remarkable improvement over a previously proposed
algorithm.
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