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Abstract—The ability of phased array systems to form multiple
beams simultaneously holds great promise to revolutionise radio
astronomy by enlarging the instantaneous sky coverage. Cur-
rently, measurements obtained by different beams are largely
treated as separate observations. In this paper, a new approach
to beam shape calibration, i.e., the calibration of direction
dependent instrumental gains, is presented, in which the fact
that these observations are done simultaneously is adequately
exploited. It follows from imposing a novel spatial constraint
on the direction dependent instrumental gain model. It may
provide better calibration performance and may even allow beam
shape calibration in scenarios in which the observations with the
individual beams provide insufficient information to do so when
they are treated as separate observations.

I. INTRODUCTION

The ability of phased array systems to form multiple beams
simultaneously holds the potential to revolutionise radio as-
tronomy by enlarging the instantaneous sky coverage [1],
[2]. The Low Frequency Array (LOFAR, [3]) has a digital
beamformer that can trade signal bandwidth per beam and
number of beams. The low-frequency observing system of the
Square Kilometre Array (SKA, [4]) will provide similar beam-
forming capability. Phased-array-fed reflector systems, like the
Aperture Tile in Focus (APERTIF) system in the Netherlands
[5], [6] and the Austalian SKA Pathfinder (ASKAP) system
in Australia [7], which are currently being commissioned, will
even provide multiple beams with full signal bandwidth. This
is also expected for the future Mid-Frequency Aperture Array
(MFAA) system of the SKA [8], [9].

Calibration of direction dependent (instrumental) gain vari-
ations is a key prerequisite for high-quality imaging with these
instruments [10], [11]. Current schemes to calibrate the beam
shape, i.e., the direction dependent gain of the instrument, treat
each beam independently [12], [13]. This is quite remarkable
as beam errors in beams formed simultaneously by the same
system are likely to be related. For example, a mechanical
pointing error of the reflector will affect all beams formed by
a phased array feed system. In this paper, a new direction
dependent instrumental gain model is therefore introduced
that assumes that the direction dependent response of the
instrument over the compound field-of-view provided by all
beams together can be decomposed into a local function that
is the same for all beams, and a global function spanning
the compound field-of-view. In the example of the mechanical
pointing error, the local function would describe the beam

shape of the individual beams with a parameter to fit the
common offset while the global function would describe the
slow gain variation experienced by a beam that is moved across
the compound field-of-view caused by the varying illumination
of the reflector for each beam pointing.

This example also illustrates that the details of the local and
global function and their parameterisations are strongly instru-
ment dependent. After introducing the decomposition of the
direction dependent instrumental gain into a local and a global
function, this paper will therefore specialise to a simplified
example that is representative for an aperture array with multi-
beaming capability consisting of identical elements. The data
model and resulting problem statement are described in Sec. II.
In Sec. III, an alternating direction implicit (ADI) method is
presented to estimate the free parameters if the local and global
functions are each a linear superposition of a suitably chosen
set of basis functions. Using this estimation method, the
beam shape reconstruction performance of the proposed multi-
beam approach is compared to that of the commonly used
approach in which each beam is treated independently using
simulated data. The simulations presented in Sec. IV show that
the reduced number of degrees of freedom in the proposed
multi-beam approach leads to better beam shape estimation
performance and may even allow direction dependent gain
calibration in scenarios where there is insufficient information
available to calibrate the beams individually. The paper is
concluded by summarising the main results.

II. DATA MODEL AND PROBLEM STATEMENT

The instruments mentioned in the introduction all con-
sist of an array of receiving subsystems with multi-beaming
capability. In the case of aperture arrays, these receiving
subsystems are subarrays or stations consisting of a number
of antennas. In the case of phased array feed systems, these
receiving subsystems are phased-array-fed reflector dishes. If
the narrowband condition holds, the signal with wavelength λ
received by the nth beam of the pth station or dish located at
ξp can be described as

xn,p (t) =

Q∑
q=1

gl
n,p,qg

g
p,qsq (t) e2πjlq·ξp/λ + nn,p (t) , (1)

where gl
n,p,q represents the local gain for the nth beam in the

direction of the qth source and gg
p,q represents the global gain
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towards the qth source. The source signal of the qth source is
described by sq (t) and is coming from direction lq , which is
a unit vector of direction cosines. Finally, nn,p (t) represents
the additive noise.

In multi-beaming systems, the nth beam of each station
or dish is pointed towards the same position on the sky. The
signals produced by the corresponding beams from all stations
or dishes are correlated with each other leading to covariance
estimates for the nth beam,

Rn,p1p2 = E {xn,p1xn,p2}

=

Q∑
q=1

gc
n,p1,qg

c
n,p2,qσqe

2πjlq
(
ξp1

−ξp2

)
/λ

+E {nn,p1nn,p2} , (2)

where we have introduced the combined direction dependent
gain gc

n,p,q = gl
n,p,qg

g
p,q and σq is the power of the qth source.

Using these covariance matrix estimates and a priori knowl-
edge of the power and positions of the brightest sources in
the sky (often referred to as calibration sources), the direction
dependent gains gc

n,p,q can be estimated [10], [11], [14]. As
gc
n,p,q is estimated independently for many frequency channels

and relatively short time intervals of order 10 s, this parameter
estimation problem has many degrees of freedom. Several
methods have therefore been proposed to exploit the continuity
of the estimated parameters over time, frequency and space
[15]–[17]. The gain model proposed in this paper provides an
excellent means to reduce the number of degrees of freedom
in the spatial dimension and can be easily integrated in the
fusion step of distributed algorithms such as proposed in [16],
[17]. Depending on the implementation of the fusion center,
the spatial constraint proposed here can be imposed as a hard
or a soft constraint on the direction dependent gain solutions.
In the latter case, the fusion center can also easily be extended
to a Bayesian framework. These implementation details are
outside the scope of this paper.

In the following description of the proposed approach, it will
be assumed that estimates ĝc

n,p,q are already obtained using
one of the available direction dependent calibration methods
(see, e.g., [10], [11], [14]). That process effectively splits the
problem into direction dependent gain estimates per station or
dish. The following discussion therefore focuses on solving
this station or dish based subproblem.

The local function describes a parameterised direction de-
pendent gain that has the same shape for each beam, but with
a different beam center, i.e., gl

n,p,q (lq) = f l
p (lq − l0,n;αp),

where lq is the position of the qth source, l0,n is the pointing
center of the nth beam and αp is a parameter vector. The
global function spans all beams and can thus be described
w.r.t. the global coordinate center, i.e., gg

p,q (lq) = fg
p

(
lq;βp

)
,

where βp is a parameter vector. Thus, the direction dependent
gain model is described by

gc
n,p,q

(
lq;αp,βp

)
= f l

p (lq − l0,n;αp) f
g
p

(
lq;βp

)
. (3)

Each of the Q calibration sources available in any of the
beams provides an estimate ĝc

n,p,q . All these estimates can be

stacked in a Q-element vector ĝc
p. For each of these positions,

the local function can be evaluated given a specific value of
parameter vector αp. The results of these function evaluations
can be stacked in a vector f l

p (αp). For the global function,
the corresponding vector fg

p

(
βp
)

can be constructed. With
these conventions, the calibration problem can be formulated
as the following least squares estimation problem:{

α̂p, β̂p

}
= argmin
αp,βp

∥∥∥ĝc
p − f

l
p (αp)� fg

p

(
βp
)∥∥∥2

. (4)

III. ESTIMATION OF FREE PARAMETERS

The problem formulated in (4) needs to be solved for each
receiving subsystem in the array. Equation (4) formulates the
problem in a generic way that does not make a priori assump-
tions on the vectors f l

p and fg
p and their parameterisation.

Assuming that the parameter vector
[
αTp ,β

T
p

]T
is identifiable,

a general solver. like the Levenberg-Macquardt algorithm or
the BFGS method, can be used. In many practical scenarios,
the free parameters will be coefficients of suitably chosen basis
functions, i.e., the vectors f l

p and fg
p are described by

f l
p = Ψlαp (5)
fg
p = Ψgβp, (6)

where the matrices Ψl and Ψg are constructed by evaluating
the basis functions selected for the local and global function
respectively at the positions of the calibration sources.

This representation for the vectors f l
p and fg

p leads to
a quadratic problem that can be solved iteratively using an
alternating direction implicit (ADI) scheme:

1) Initialisation: Set the iteration counter i = 1 and set β[0]
p

to some suitable initial value and calculate fg
p

(
β[0]
p

)
.

2) Update α̂p by solving

α[i]
p = argmin

αp

∥∥∥ĝc
p − diag

(
fg
p

(
β[i−1]

))
Ψlαp

∥∥∥2

,

which is a linear problem that is straightforward to solve.
3) Update β̂p by solving

β[i]
p = argmin

βp

∥∥∥ĝc
p − diag

(
f l
p

(
α[i−1]

))
Ψgβp

∥∥∥2

,

which is another linear problem that is straightforward
to solve.

4) Check for convergence or maximum number of itera-
tions. Repeat steps 2-4 if the solution has not converged
sufficiently and the maximum number of iterations has
not been reached, otherwise stop.

This approach is used in the simulations in the next section,
in which polynomial basis functions are assumed. By limit-
ing polynomial order, a smoothness constraint is effectively
adopted and the number of free parameters is reduced. This
will be shown to improve calibration performance.
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IV. SIMULATIONS

A. Description

To illustrate the advantages of the proposed multi-beam
approach over calibrating the beam shapes of all beams
individually, let us apply this idea to a simple example of a
single one-dimensional aperture array station (p = 1 always).
Assuming a perfectly calibrated, dense (antenna separation
≤ λ/2) uniform linear array, the array factor will be a
sinc function. If all antennas have the same element beam
pattern, the actual beam shape will be determined by the array
factor multiplied by the element beam pattern [18]. Around
its maximum, the sinc function can be well approximated by
a paraboloid. A second order polynomial is usually a good
approximation around the main beam maximum of the broad
element beam pattern as well. For the simulations, we will
therefore use second order polynomials to describe the main
beam area within the half power beamwidth for both the array
factor (local function) and element beam (global function), i.e.,

gl (l − l0,n;α0, α1, α2)

=

{
α0 + α1 (l − l0,n) + α2 (l − l0,n)

2 |l − l0,n| ≤ ∆l
2

0 |l − l0,n| > ∆l
2

(7)

and
gg (l;β0, β1, β2) = β0 + β1l + β2l

2. (8)

Note that the direction cosine l is now a scalar as we are
considering a one dimensional case. Also, the subscripts n
and q have been omitted as those can be understood from l0,n
and l respectively. The half power beam width of the array
factor is represented by ∆l. The discontinuity in the definition
of the local function is not an issue as we will only consider
the main beam area within the half power beamwidth in our
simulations.

The simulations consider an array forming 9 beams simul-
taneously with the central beam pointing towards l = 0. Each
beam has a half power beamwidth ∆l = 0.1, which is assumed
to be the separation in pointing between the beams as well.
Fitting a paraboloid through the main beam peak and the two
half power points gives α0 = 1, α1 = 0 and α2 = −200.
Strictly speaking, these coefficients are valid when the fit
is made in the power domain, while the gains defined in
the previous section are signal domain gains. For this single
station example, this does not matter as the gain phases cancel
when the signal from a station is correlated with itself. This
simplification thus avoids taking a square root in the analysis.
For the element radiation pattern, it is assumed that it has unit
gain towards l = 0 and zero gain at l = ±1. This gives β0 = 1,
β1 = 0 and β2 = −1. This model is shown in Fig. 1.

B. Scenario 1: many calibration sources

Current best practice is to calibrate the beam shape for
each beam independently. This results in a problem similar
to (4) for each beam in which fg

p = 1 and one only needs
to solve for αp. If f l

p (αp) has N degrees of freedom, at
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Fig. 1. Gain model for the 9-beam aperture array used in the simulations. The
dotted curves represent the array factors of the 9 individual beams (described
by the local function), the dash-dotted curve shows the element beam pattern
(described by the global function) and the solid curve represents the combined
result describing the actually realised beams.

least N calibration sources need to be available within each
beam to make the problem identifiable. In this section, it will
be demonstrated that the proposed multi-beam approach gives
better beam shape estimates than beam shape calibration per
beam even if there is a sufficiently high density of calibration
sources. This will be done by comparing the standard deviation
and bias across the compound field-of-view for three cases:

1) calibration using the proposed multi-beam approach with
f l
p and fg

p both being second order polynomials (6 free
parameters for all 9 beams);

2) calibration per beam using a second order polynomial
(27 free parameters in total);

3) calibration per beam using a fourth order polynomial
(45 free parameters in total).

As the combined gain of the element beam pattern and the
array factor is a product of two second order polynomials,
calibration using the third approach is expected to be bias free,
but it requires estimation of a larger number of parameters than
the first case. In the second case, the number of parameters
to be estimated is reduced to three per beam, but the chosen
model may not fit the actual data perfectly, resulting in a bias.

To populate the data vector ĝc, a regular grid of calibration
sources with a SNR of 10 and a separation between sources
of δl = 0.01 was assumed, resulting in 10 sources per beam.
This unrealistic scenario ensures that all beams are equally
well sampled, such that any difference between the three
approaches can be attributed to the susceptibility of each
method to measurement noise and not to their susceptibility to
an unfavourable distribution of sources. Figures 2 and 3 show
the standard deviation and bias across all nine beams obtained
in a Monte Carlo simulation of 1000 runs.

Figure 2 shows that calibration per beam with a fourth order
polynomial gives a higher variability between the estimated
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Fig. 2. Standard deviation of the estimated beam shape model across the
compound field-of-view formed by nine beams obtained in a Monte Carlo
simulation of 1000 runs. The results for multi-beam calibration (case 1),
calibration per beam with a second order polynomial (case 2) and calibration
per beam with a fourth order polynomial (case 3) are represented by the solid,
dotted and dash-dotted curve respectively.
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Fig. 3. Bias of the estimated beam shape model across the compound field-
of-view formed by nine beams obtained in a Monte Carlo simulation of 1000
runs. The results for multi-beam calibration (case 1), calibration per beam with
a second order polynomial (case 2) and calibration per beam with a fourth
order polynomial (case 3) are represented by the solid, dotted and dash-dotted
curve respectively.

beam shapes than calibration per beam with a second order
polynomial, which in turn gives a higher variability between
the estimated beam shapes than the proposed multi-beam
calibration approach. The largest variations occur at the beam
edges, which is typical behaviour for a polynomial fit at
the edge of the fitting interval. Quantitatively, the standard
deviation appears proportional to the square root of the number
of degrees of freedom. This behaviour is expected for inde-
pendent parameters and independent measurements. Figure 3
shows that the bias is effectively negligible being about an
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Fig. 4. Standard deviation of the estimated beam shape model across the
compound field-of-view formed by nine beams obtained in a Monte Carlo
simulation of 1000 runs. The results for multi-beam calibration with 9, 18
and 27 sources randomly distributed across the compound field-of-view are
presented by the dotted, dash-dotted and solid curve respectively.

order of magnitude smaller than the standard deviation. As
expected, the largest peaks occur for calibration per beam with
a second order polynomial.

C. Scenario 2: few calibration sources

In the second, more realistic scenario, 9, 18 or 27 sources
with a SNR of 10 are randomly distributed over the compound
field-of-view of all beams. This implies that there are just
one, two or three sources on average per beam, but due
to their random placement, it is unlikely that three sources
are available in each beam in the latter case. As a result,
calibration per beam will fail as this poses an unidentifiable
problem. Therefore, only the results for the proposed multi-
beam calibration approach will be presented.

Figures 4 and 5 show the standard deviation and bias across
all nine beams obtained in a Monte Carlo simulation of 1000
runs. The results for 18 and 27 sources are already very
similar to those found for the first scenario with 10 sources
uniformly distributed across each beam. The results obtained
for 9 randomly distributed sources across the compound field-
of-view are much worse. This is caused by the fact that in
some runs, the spatial distribution of sources may be very
unfavourable. If the number of sources increases, the more
likely a reasonably homogenous spatial coverage becomes.
Despite the obvious impact of the spatial distribution and SNR
of the calibration sources, these results show that the proposed
multi-beam calibration approach makes beam shape calibration
in these scenarios viable by ensuring an identifiable calibration
problem, whereas the traditional beam-by-beam calibration
approach is faced with an unidentifiable problem for at least
some of the beams.
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Fig. 5. Bias of the estimated beam shape model across the compound field-
of-view formed by nine beams obtained in a Monte Carlo simulation of
1000 runs. The results for multi-beam calibration with 9, 18 and 27 sources
randomly distributed across the compound field-of-view are presented by the
dotted, dash-dotted and solid curve respectively.

V. CONCLUSIONS

The new generation of radio astronomical instrumentation
based on phased array technology has the ability to increase
the instantaneous sky coverage by forming multiple beams
simultaneously. As those beams are formed by the same
system at the same time, beam errors in those beams are
likely to be strongly related. In this paper, a multi-beam
calibration approach to direction dependent instrumental gain
(beam shape) calibration is presented that exploits that by
introducing a novel direction dependent instrumental gain
model. Simulation results indicate that the proposed multi-
beam calibration approach outperforms the traditional ap-
proach in which the direction dependent gains are solved for
each beam individually. The proposed method provides higher
beam shape estimation accuracy and works in scenarios in
which the spatial density of suitable calibration sources is too
low for the traditional method to work.
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