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Abstract—A new cyclostationarity-based signal detector is
proposed. It is based on (conjugate) cyclic autocorrelation mea-
surements at pairs of cycle frequencies and lags for which the
signal-of-interest exhibits cyclostationarity while the disturbance
does not. No assumption is made on the noise distribution and/or
its stationarity. A comparison is made with a previously proposed
statistical test for presence of cyclostationarity. Monte Carlo
simulations are carried out for performance analysis.

Index Terms—Cyclostationarity; Detection.

I. INTRODUCTION

Signal detection consists in discriminating the null hypoth-

esis (only noise is present in the data) from the alternative

hypothesis (both useful signal and noise are present). The

optimum detector in the sense of Neyman-Pearson compares

the likelihood ratio with a threshold that depends on the

desired false-alarm rate [19, Sec. 2.5]. Its implementation

requires the knowledge of the received signal distribution

under both hypotheses and in general is a formidable problem

if the noise is non Gaussian and/or non stationary.

In this paper, the problem of detecting the presence of an

almost-cyclostationary (ACS) process embedded in noise is

addressed. Second-order ACS processes have autocorrelation

that is a periodic or almost-periodic function of time. That is, it

can be expressed as superposition of sinewaves with possibly

incommensurate frequencies, referred to as cycle frequencies

[4, Chap. 10]. The magnitudes and phases of these sinewaves

are referred to as cyclic autocorrelation functions. Cycle

frequencies are related to signal parameters such as carrier

frequency, symbol rate, sampling frequency, and coding rate.

Thus, cyclostationarity-based signal processing algorithms are

signal selective.

The problem of detecting an almost-cyclostationary SOI

is considered here in the presence of additive nonstationary

and/or non Gaussian disturbance with unknown distribution.

For this purpose, instead of deriving the detector structure

starting from the observed signal, the measurements of the

cyclic autocorrelation are adopted as “front-end” data. In

fact, properly normalized versions of these measurements

are asymptotically complex normal as the data-record length

approaches infinity, provided that the SOI and disturbance are

processes with finite or practically finite memory. Thus, the

log-likelihood ratio test (LLRT) can be derived from these

measurements.

The detector performs the test at specific values of the cycle

frequency and the lag parameter of the cyclic autocorrelation

function. Unlike detectors based on the spectral line regener-

ation [4, Sec. 14.E], [5], [6], the considered cycle frequencies

can be possibly shared with the disturbance signal, and the

only requirement is that the disturbance does not exhibits

cyclostationarity at the selected pairs of cycle frequencies and

lags chosen for the SOI. In addition, the threshold can be

analytically derived.

The proposed detector is compared with the statistical test

for presence of cyclostationarity presented in [2] and used

in [7], [11] in the context of cognitive radio. In [2], the

null hypothesis of absence of cyclostationarity in the data is

discriminated versus the alternative hypothesis of presence of

cyclostationarity in the data. It is clarified that the detector

presented in this paper and the test in [2] are intrinsically

different. In fact, in the former the observed signal is different

under the two hypotheses while in the latter the observed

signal is the same under both hypotheses. It is shown that there

is a lack of performance in adapting the test [2] to the signal

detection problem as done in [9], [13], and [16]. However, in

such a case, the detector implementation is simplified.

Theoretical results are corroborated by numerical experi-

ments.

The paper is organized as follows. In Section II, almost-

cyclostationary processes are briefly reviewed. In Section III

the structure of the proposed detector is derived. A comparison

with the test of [2] is made in Section IV and numerical results

presented in Section V. Conclusions are drawn in Section VI.

II. ALMOST-CYCLOSTATIONARY SIGNALS

Two second-order complex-valued processes y(t) and x(t)
are said wide-sense jointly almost-cyclostationary if their

(conjugate) cross-correlation function is an almost-periodic

function of time [4, Chap. 10], [12, Sec. 1.3]. That is,

E{y(t+ τ) x(∗)(t)} =
∑

α∈A

Rα
yx(∗)(τ) e

j2παt . (1)

In (1), superscript (∗) denotes an optional complex conju-

gation, A is the countable set possibly depending on (∗) of

(conjugate) cycle frequencies, and

Rα
yx(∗)(τ) , lim

T→∞

1

T

∫ T/2

−T/2

E{y(t+ τ) x(∗)(t)} e−j2παt dt

(2)

with α ∈ A, are the (conjugate) cyclic cross-correlation

functions. When y(t) ≡ x(t) in (1) and (2), we have the

condition of second-order almost-cyclostationarity for a single

process.
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Under the assumption of finite or practically finite memory

of the processes y(t) and x(t), expressed in terms of summa-

bility of second- and fourth-order cumulants (see [12, Sec. 2.4]

for details), the (conjugate) cyclic cross-correlogram

R
(T )

yx(∗)(α, τ) ,
1

T

∫ T/2

−T/2

y(t+ τ) x(∗)(t) e−j2παtdt (3)

is a mean-square consistent estimator of the (conjugate) cyclic

cross-correlation Rα
yx(∗)(τ). In addition, under further condi-

tions of summability of higher-order cumulants, the normal-

ized error

√
T ǫ

(T )

yx(∗)(α, τ) ,
√
T
[
R

(T )

yx(∗)(α, τ) −Rα
yx(∗)(τ)

]
(4)

is asymptotically (T → ∞) zero-mean complex normal.

III. CYCLOSTATIONARITY-BASED SIGNAL DETECTION

Let us consider the binary hypothesis test

H0 : r(t) = n(t)
H1 : r(t) = x(t) + n(t)

t ∈ [−T/2, T/2] (5)

where x(t) and n(t) are zero-mean statistically independent

random processes.

If the joint probability density function of x(ti) and n(ti),
i = 1, . . . , N , is unknown or complicated, then the likelihood

ratio test (LRT) or the generalized likelihood ratio test (GLRT)

cannot be derived.

Assume that, for fixed α and τ , Rα
xx(∗)(τ) 6= 0 and

Rα
nn(∗)(τ) = 0. Under H0 and H1, we have

H0 : Rα
rr(∗)

(τ) = Rα
nn(∗)(τ) = 0

H1 : Rα
rr(∗)

(τ) = Rα
xx(∗)(τ) +Rα

xn(∗)(τ)
+Rα

nx(∗)(τ) +Rα
nn(∗)(τ)

= Rα
xx(∗)(τ) .

(6)

Note that the assumptions are made for a specific pair (α, τ).
That is, the noise can possibly exhibit cyclostationarity at

the same cycle frequency of the SOI, but in correspondence

of values of the lag parameter that are not selected for

discriminating the two hypotheses.

Equations (5) and (6) suggest the following ad hoc (non-

optimum and not equivalent to (5)) binary hypothesis test to

discriminate the hypotheses H0 and H1 when r(t) is observed

for t ∈ [−T/2, T/2]:

H0 : R
(T )

rr(∗)
(α, τ) = ǫ

(T )
0 (α, τ)

H1 : R
(T )

rr(∗)
(α, τ) = Rα

xx(∗)(τ) + ǫ
(T )
1 (α, τ) .

(7)

In (7),

ǫ
(T )
0 (α, τ) , R

(T )

nn(∗)(α, τ) (8)

ǫ
(T )
1 (α, τ) , ǫ

(T )

xx(∗)(α, τ) +R
(T )

xn(∗)(α, τ)

+R
(T )

nx(∗)(α, τ) +R
(T )

nn(∗)(α, τ) (9)

where quantities are defined according to (3) and (4).

Let zk denote any of x, x∗ or any of n, and n∗, and assume

that for any N > 2

cum {z1(t+ τ1), . . . , zN−1(t+ τN−1), zN (t)}
=

∑

β∈AN

Cβ
z1···zN (τ1, . . . , τN−1) e

j2πβt (10)

∑

β∈AN

∣∣Cβ
z1···zN (τ1, . . . , τN−1)

∣∣ ∈ L1(RN−1) . (11)

where Cβ
z1···zN (τ1, . . . , τN−1) are the reduced-dimension

cyclic temporal cross-cumulant functions.

Thus, independently of the distribution of x(t) and n(t), we

have that [12, Section 2.4]

lim
T→∞

E
{∣∣∣ǫ(T )

i (α, τ)
∣∣∣
2}

= 0 i = 0, 1 . (12)

In addition, the error terms
√
T ǫ

(T )
0 (α, τ) and

√
T ǫ

(T )
1 (α, τ),

are both noncircular asymptotically (T → ∞) zero-mean

complex normal with covariance and conjugate covariance

matrices that are different under the two hypotheses H0 and

H1 [12, Section 2.4].

Even if test (7) is not optimum, due to (12) it is expected to

have asymptotically (T → ∞) good performance. Moreover,

it is easily implementable due to the normal distribution of the

observations under the two hypotheses H0 and H1.

It is worthwhile to underline that the detection problem (7)

is different from the statistical test for presence of cyclostation-

arity proposed in [2] and considered in several applications in

cognitive radio (see e.g., [7], [11]). As clarified in Section IV,

in [2] the two tested hypotheses are not absence or presence

of a SOI and, unlike in (5), the observed signal r(t) is the

same under both hypotheses.

In [8], the detection problem (5) is considered when n(t) is

colored Gaussian noise. The statistical characterization of the

error term ǫ
(T )
0 (α, τ) is derived in this special case.

The test (7) can be considered for several pairs (αk, τk),
k = 1, . . . ,K , where some of the αks or τks can assume the

same values. That is, the following test can be considered

H0 : R
(T )

rr(∗)k
(αk, τk) = ǫ

(T )
0 (αk, τk)

H1 : R
(T )

rr(∗)k
(αk, τk) = Rαk

xx(∗)
k
(τk) + ǫ

(T )
1 (αk, τk)

k = 1, . . . ,K
(13)

where the optional complex conjugation (∗)k possibly depends

on k.

Under assumption (10), (11) and further mild assumptions

on the cumulant series expansions [12, Sec. 2.4], the (column)

random vector

Z , {
√
T R

(T )

rr(∗)k
(αk, τk); k = 1, . . . ,K} (14)

for T sufficiently large is complex normal under both hypothe-

ses

Z | Hi ∼ N (µi,Σi,Σ
(c)
i ) i = 0, 1 (15)

with mean vectors

µ0 = E{Z | H0} = 0

µ1 = E{Z | H1} = {
√
T Rαk

xx(∗)
k
(τk); k = 1, . . . ,K}

(16)
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asymptotic covariance matrix Σi with entries

Σi(k1, k2) = lim
T→∞

cov
{
Zk1 , Zk2 | Hi

}

= lim
T→∞

T cov
{
ǫ
(T )
i (αk1 , τk1), ǫ

(T )
i (αk2 , τk2)

}

(17)

and asymptotic conjugate covariance matrix Σ
(c)
i with entries

Σ
(c)
i (k1, k2) = limT→∞ cov

{
Zk1 , Z

∗
k2

|Hi

}
.

Let us define the augmented random vector

ζ , [ZTZH]
T

(18)

and let ζa denote a realization. In (18), superscripts T and

H denote transpose and Hermitian transpose, respectively. In

addition, let us define the augmented mean vector

µζ|Hi
,

[
E{Z |Hi}
E{Z∗ | Hi}

]
=

[
µi

µ∗
i

]
(19)

and the augmented covariance matrix

Γi , E
{
(ζ − µζ|Hi

)(ζ − µζ|Hi
)H |Hi

}
=

[
Σi Σ

(c)
i

Σ
(c) ∗
i Σ

∗
i

]
.

(20)

Due to the asymptotic complex normality of Z, we have that

the joint probability density function of the real and imaginary

parts of the components Zk of Z can be written in the complex

form as [14]

fζ|Hi
(ζa) =

1

πK |detΓi|1/2

exp

[
−1

2
(ζa − µζ|Hi

)HΓ−1
i (ζa − µζ|Hi

)

]
.

(21)

If a detector is designed starting from the (conjugate)

cyclic autocorrelation measurements (13) rather than from the

observed signal (5), then it consists in comparing the log

likelihood ratio (LLR) with a threshold

ln
fζ|H1

(ζa)

fζ|H0
(ζa)

H1

≷
H0

λ (22)

where the likelihood functions are given in (21).

If the detector is used in the context of cognitive radio,

then λ = ln(P[H0]/P[H1]), where P[H1] is the fraction-

of-time probability [4, Chap. 5] that the primary user is

active. Alternatively, in radar/sonar applications, the threshold

is chosen according to the Neyman-Pearson criterion starting

from the desired probability of false alarm.

It is worthwhile to underline that such a detector is not opti-

mum. Its adoption is motivated by the fact that, although x(t)
and/or n(t) are possibly non Gaussian, the data constituted by

the (conjugate) cyclic autocorrelation measurements are Gaus-

sian under the very mild assumption of finite or practically

finite memory of the involved processes, provided that the

data-record length T is sufficiently large. Note, however, that

detector (22) is optimum if we consider as “front-end” data the

(conjugate) cyclic correlation measurements R
(T )

rr(∗)k
(αk, τk)

rather than the signal r(t). This point of view was adopted in

the context of time-difference-of-arrival estimation in [18].

If the parameters µζ|H1
, Γ1, and Γ0 are unknown and are

replaced by their maximum likelihood (ML) estimates µ̂ζ|H1
,

Γ̂1, and Γ̂0, one obtains the generalized log-likelihood ratio

test (GLLRT) [19, Sec. 2.5]

ln
fζ|H1

(ζa; µ̂ζ|H1
, Γ̂1)

fζ|H0
(ζa; Γ̂0)

H1

≷
H0

λ (23)

If the estimates µ̂ζ|H1
, Γ̂1, and Γ̂0, are not ML but are

consistent, test (23) is not GLLRT, but can be considered as

ad hoc test for the considered problem [8, Sec. IV-C-2].

In the following, consistent estimates for µ̂ζ|H1
, Γ̂1, and Γ̂0

are proposed and the resulting test derived.

According to (16), an estimate µ̂1 of µ1 is given by

µ̂1 =
{√

T R
(T )

rr(∗)k
(αk, τk); k = 1, . . . ,K

}
(24)

for T sufficiently large. The (conjugate) cyclic correlograms

are consistent under mild assumptions (see (10), (11)).

Let

R
(b,u)

rr(∗)
(α, τ) ,

1

b

∫ u+b/2

u−b/2

r(t+ τ) r(∗)(t) e−j2παtdt (25)

be the (conjugate) cyclic correlogram estimated on the basis

of r(t) with t ∈ [u− b/2, u+ b/2], where in the notation the

dependence on the central point u of the observation block

is evidenced. An estimate of the entries of the augmented

covariance matrix Γi (see (20)) is given by the block-bootstrap

or subsampling estimate built by r(t), t ∈ [−T/2, T/2], under

hypothesis Hi. For example, for the entries of the sub-matrix

Σi we have

Σ̂i(k1, k2)

= b
〈
R

(b,u)

rr
(∗)

k1
(αk1 , τk1)R

(b,u)∗

rr
(∗)

k2
(αk2 , τk2) | Hi

〉
u

− b
〈
R

(b,u)

rr
(∗)

k1
(αk1 , τk1) |Hi

〉
u

〈
R

(b,u)∗

rr
(∗)

k2
(αk2 , τk2) |Hi

〉
u
.

(26)

In (26), 〈·〉u denotes temporal average for u ∈ [−T/2 +
b/2, T/2− b/2]. Similar estimates can be built for the entries

of the other sub-matrices in (20). Under the mild assumption

of finite or practically finite memory for the process r(t), the

estimate is consistent provided that b → ∞ and T → ∞ with

b/T → 0 [3], [10].

If the estimate (24) is taken for µ1, then the numerator

in (23) does not depend on the observation ζa and test (23)

reduces to

Q̂(ζa) , ζH

aΓ̂
−1

0 ζa

H1

≷
H0

λ . (27)

The threshold in (27), different from that in (23), has

been renamed λ and can be analytically derived. In fact, for

T large, under H0, the quadratic form Q(ζ) , ζH

Γ
−1
0 ζ,

with Γ0 denoting the true augmented covariance matrix of

ζ, has central χ2 distribution with 2K degrees of freedom

[1, Theorem 3.3.3] (adapted to the complex case). Since Γ̂0
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is a consistent estimate of Γ0, then Γ̂
−1

0 approaches Γ
−1
0

in probability as T → ∞, provided that Γ
−1
0 exists [15,

Sec. 4.1.2, p. 140]. Consequently, under H0, Q(ζ) and Q̂(ζ)
asymptotically have the same central χ2

2K distribution Fχ2
2K

(·)
[15, Sec. 4.1.2, p. 140]. Therefore, for a desired false-alarm

rate Pfa = P[Q̂ > λ | H0] = 1− Fχ2
2K

(λ) we have

λ = F−1
χ2
2K

(1 − Pfa) . (28)

The implementation of detector (27) requires auxiliary data

under H0 necessary to obtain the estimate Γ̂0 before perform-

ing the test. In cooperative communications, such an estimate

can be obtained in time intervals during which it is known that

the signal x(t) is absent. In radar/sonar applications, under

the assumption of sufficiently spatially homogeneous noise

environment, estimate Γ̂0 can be obtained starting from cells

neighboring the cell-of-interest.

IV. STATISTICAL TEST FOR PRESENCE OF

CYCLOSTATIONARITY

In this section, the statistical test for presence of cyclosta-

tionarity proposed in [2] and considered in several applications

in cognitive radio (see e.g., [7], [11]) is revisited.

The test in [2] consists in checking if the signal r(t) exhibits

(H′
1) or not (H′

0) cyclostationarity at the pair (α, τ). That is,

H′
0 : (α, τ) 6∈ supp{Rα

rr(∗)
(τ)}

H′
1 : (α, τ) ∈ supp{Rα

rr(∗)
(τ)} (29)

where supp{·} denotes the support of the argument in the

brackets. If the signal r(t) observed for t ∈ [−T/2, T/2],
(29) implies that

H′
0 : R

(T )

rr(∗)
(α, τ) = ǫ(T )(α, τ)

H′
1 : R

(T )

rr(∗)
(α, τ) = Rrr(∗)(α, τ) + ǫ(T )(α, τ) .

(30)

In (30), unlike (7), the observed signal r(t) is the same under

both hypotheses. Consequently, the error term ǫ(T )(α, τ) is the

same under both hypotheses H′
0 and H′

1.

Similarly to (13), test (30) can be considered for several

pairs (αk, τk), k = 1, . . . ,K , [11], [16]. In such a case, test

(30) reduces to

Q̂′(ζa) , ζH

aΓ̂
−1

ζa

H′

1

≷
H′

0

λ′ (31)

which is presented here in terms of complex-valued augmented

vectors and is equivalent to the test originally derived in [2]

in terms of real-valued vectors of real and imaginary parts of

the (conjugate) cyclic correlograms. In (31), ζa is a realization

of the random augmented vector ζ with augmented covariance

matrix Γ whose estimate is denoted by Γ̂. In [2], the estimates

of the entries of Γ are obtained by frequency smoothing

(conjugate) cyclic correlograms of second-order lag products

of the data r(t).
It is worthwhile to underline that test (13) and the vector

valued counterpart of test (30) are different. In fact, in the

former, data r(t) is different under the two hypotheses H0

and H1 and, consequently, ǫ
(T )
0 and ǫ

(T )
1 in (13) are different

and have different statistical characterization. In contrast, in

the latter, data r(t) is the same under the two hypotheses H′
0

and H′
1. Therefore, in (31), the estimate Γ̂ is obtained by the

available data and not from auxiliary data as in (27).

Let us consider now, the situation in which the detection

statistic Q̂′ of test (31) is adopted in the context of signal de-

tection (see [9], [13], [16]) that is, to discriminate hypotheses

H0 and H1 on the basis of the observation r(t) as in (5):

Q̂′(ζa) , ζH

aΓ̂
−1

ζa

H1

≷
H0

λ′ (32)

We obviously have H0 ⇒ H′
0. Consequently, under H0 we

have Γ = Γ0 so that Q′(ζ) = ζ
H

Γ
−1ζ and Q(ζ) = ζ

H

Γ
−1
0 ζ

have the same asymptotic distribution χ2
2K . Thus, for a given

Pfa we have λ′ = λ, with λ given in (28).

Under H1 we have Γ = Γ1. Consequently, Q′(ζ) =
ζH

Γ
−1ζ and Q(ζ) = ζH

Γ
−1
0 ζ do not have the same distri-

bution. Hence, P ′
d = P[Q′ > λ |H1] 6= P[Q > λ | H1] = Pd.

The same results hold asymptotically, when the true covari-

ance matrices are replaced by their consistent estimates.

If we consider the detection problem starting from “front-

end” data R
(T )

rr(∗)
(α, τ) (rather than from the original data

r(t)), we have that test (22) is optimum (among those derived

from data R
(T )

rr(∗)
(α, τ)). In addition, accounting for the Slusky

theorem [15, p. 19], Q̂ approaches Q in distribution as T → ∞
also under hypothesis H1. Thus, test (23) is asymptotically

optimum provided that estimates are consistent. For a fixed

Pfa the threshold (calculated under H0) is the same and we

have P ′
d 6 Pd.

From the above considerations, it follows that there is a

lack of performance in using test (32) to discriminate between

hypothesis H0 versus H1. However, there is the advantage that

no side data are necessary for the estimation of the covariance

matrix.

V. NUMERICAL RESULTS

In this section, simulation experiments are presented to

evaluate the performance of the proposed detector (27) in

the presence of severe noise and interference environment. In

addition, the detector performance is compared with that of

test of [2] when used for the purpose of signal detection as in

[9], [13], [16] (see (32)).

The SOI x(t) is a filtered pulse-amplitude modulated (PAM)

signal with stationary white binary modulating sequence,

rectangular pulse with 50% duty cycle, and symbol period

Tp = 8Ts, where Ts = 1/fs is the sampling period. The

linear time-invariant (LTI) filter is a one-pole system with

bandwidth fs/8. The SOI exhibits cyclostationarity at the pairs

(α, τ) = (k/Tp, 0) with k integer.

The disturbance n(t) is constituted by additive Gaussian

noise with slowly varying power spectral level flat within

the bandwidth (−fs/2, fs/2) and an interfering signal. The

interference is a PAM signal with stationary white binary

modulating sequence, full duty-cycle rectangular pulse, and

symbol period Ti = 7Ts. The signal-to-interference ratio (SIR)
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is fixed at – 5 dB. The signal-to-noise ratio (SNR) ranges from

– 12 dB to 4 dB.

Only one pair (α, τ) = (1/Tp, 0) is considered for the pro-

posed detector (27) and test (32). Nb = 29 bits are processed

for each Monte Carlo run to compute the cyclic correlograms.

Thus, the data-record length is N = NbTp/Ts = 212. The

estimate Γ̂0 of the augmented covariance matrix is obtained

from data under H0 adopting b = 32Ts in (26). The estimate Γ̂

of the covariance matrix in test (31) is made according to the

guidelines in [2] using a Kaiser frequency-smoothing window

with parameter β = 10 and bandwidth ∆f = fs/8.

For the proposed detector, the probability of missed de-

tection Pmd as a function of SNR for two values of the

false-alarm rate Pfa is estimated via 105 Monte Carlo trials

(Fig. 1). For comparison purpose, the performance of the

proposed detector with covariance matrix estimated from the

available data (i.e., assuming that no auxiliary data under H0

are available), of test [2] used for signal detection, and of the

energy detector is also determined.

According to the results of Sections III and IV, the pro-

posed detector (27) outperforms all other detectors based on

(conjugate) cyclic autocorrelation measurements. The poor

performance of the energy detector is due to the variability

of the noise power spectral density [17].

Fig. 1. Pmd as function of SNR for (top) Pfa = 10
−3 and (bottom)

Pfa = 10
−4. (◦) proposed detector (27) with analytically derived

threshold; (�) proposed detector (27) without using auxiliary data;
(▽) test (32) of [2] with analytically derived threshold; (♦) energy
detector.

VI. CONCLUSION

A cyclostationarity-based signal detector is proposed, pro-

vided that pairs of cycle frequencies and lags exist for which

the SOI exhibits cyclostationarity while the disturbance does

not. The detector is based on (conjugate) cyclic autocorrelation

measurements and is asymptotically optimum assuming these

measurements as “front-end” data. It requires the availability

of auxiliary measurements under the null hypothesis. In the

absence of these measurements a sub-optimum structure can

be adopted that reduces to a statistic originally proposed to

test the presence of cyclostationarity in the data.
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