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Abstract—Nowadays, renewable energies play an important
role to cover the increasing power demand in accordance with
environment protection. Solar energy, produced by large solar
farms, is a fast growing technology offering environmental
friendly power supply. However, its efficiency suffers from solar
cell defects occurring during the operation life or caused by
environmental incidents. These defects can be made visible using
electroluminescence (EL) imaging. A manual classification of
these EL images is very time and cost demanding and prone
to subjective inter-examiner variations. For a fully automated
defect detection, we introduce a deep learning based classi-
fication pipeline operating on the EL images. This includes
image preprocessing for distortion correction, segmentation and
perspective correction as well as a deep convolutional neural
network for solar defect classification with special emphasis on
dealing with highly imbalanced dataset. The impact of minority
oversampling and data augmentation on the system accuracy
is investigated. The performance of our proposed classification
pipeline is demonstrated by applying it to a real world dataset.

Index Terms—solar cell classification, imbalanced data, deep
learning, renewable energies, electroluminescence

I. INTRODUCTION

Renewable energies are essential for future power supply.
Besides wind and water energy, one of the most important
technologies, supplying around two percent of the world’s total
power demand today, is solar energy [1]. It is mainly produced
by huge solar parks with power outputs up to 1GW.

During their lifetime, the total power output decreases,
mostly because of defects in the solar modules and their
cells. An increasing number of environmental incidents such
as storm and hail makes it even more important to analyze
the solar panel condition and detect the occurred defects.
An appropriate method is to use electroluminescence (EL)
characterization under daylight conditions [2], [3]. Normal
photography imaging is not able to reveal the solar cell defects.
By means of EL imaging, it is possible to visualize defects
like cracks and inactive cell areas to evaluate the cell quality
and the overall module and solar park quality.

Manually analyzing these EL images is a very time con-
suming process because of the large amount of data. For
example, in a 300MW park with 250W modules and 72 cells
per module, 86.4 millions cell images need to be evaluated,
which is infeasible in practice, see Table I. In addition, the
quality of manual inspection of cell images depends on the

TABLE I: Number of cells in photovoltaic systems.

rooftop open space

private industry small mid large record

MW 0.01 0.4 1 10 300 1, 000
Modules 40 1, 600 4, 000 40, 000 1, 200, 000 4, 000, 000

Cells 2, 880 115, 200 288, 000 2, 880, 000 86, 400, 000 288, 000, 000

experience of the examiner and is prone to subjective inter-
examiner variations.

In order to enable a fast, low-cost and reliable evaluation
of solar cells, we propose an automated defect detection,
using a deep convolutional neural network (CNN) for the
EL cell image classification. To estimate the power output of
solar modules by using the sun’s position, neural networks
have already been applied with great success to detect power
losses in solar modules [4]. Furthermore, the detection of
solar modules in low-quality satellite photos by the application
of convolutional neural networks with a high detection rate
shows the potential of deep learning based methods to evaluate
images of solar modules [5].

One difficulty in the training of the CNN in our case is the
highly imbalanced dataset due to a typically small fraction
of defect cells. Furthermore, this minority class shows large
variations in the structure and position of the defects. They
appear as fine structured small cracks or large dark areas in the
cell image due to different physical causes. Further challenges
are low resolution and low sharpness of the cell images caused
by the EL imaging principle and the perspective image.

In this paper, we examine for the first time the feasibility
of a CNN to detect cell defects by using EL images of
solar cells. We present a signal processing pipeline for image
preprocessing and classification, which will enable the auto-
mated evaluation of large solar parks in the future. Different
methods to handle the dataset imbalance and the minority class
variations are described. We investigate especially the impact
of minority oversampling and data augmentation. We apply
our pipeline to a real world dataset with promising results.

II. METHODS

A. Pipeline

For the fully automated classification of solar cell defects,
we developed a pipeline which processes the EL images of
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Fig. 1: EL image of a solar module.

solar modules. Fig. 1 shows one example of EL images of a
solar module containing 6 × 12 cells. Since the EL images
contain the intrinsic distortions caused by the camera lens, a
first intrinsic calibration step is needed to correct the image
distortions. This is done offline by using a calibration pattern
and a standard calibration method [6].

Because the images are taken from a camera standing on
the ground, a perspective transform as in Fig. 1 is present and
has to be corrected as well. Therefore, the module in an EL
image is segmented by means of a contour finding algorithm
that extracts the raw contour of the module [7]. Since the
perspective transform leads to an arbitrary quadrangle shape
of the module, the RANSAC algorithm [8] is used to fit this
geometrical shape into the raw contour ending up with the
edge points of the module. The RANSAC algorithm helps
to improve the accuracy of the estimated edge coordinates
because of its robustness against outliers. With the knowledge
of the width-to-height ratio of a module and the estimated
edge coordinates, the perspective correction is performed. The
cells are then extracted out of the corrected image by using
the known number and arrangement of cells in a module (e.g.
6×12). Finally, the cells are classified by a CNN. An overview
of the pipeline is shown in Fig. 2.

EL image

Distortion correction

Segmentation

Perspective correction

Cell extraction

Classification

Classified solar cells

Fig. 2: Classification pipeline

(a) (b) (c) (d)

Fig. 3: Cell images with (a) no defect, (b) micro crack defect,
(c) large-scale defect, (d) defect and low resolution.

B. Images

The extracted gray cell images are resized to a fixed size of
120×120 pixels. Examples are shown in Fig. 3. The structure
of the defects ranges from micro cracks to large dark areas
due to different reasons. Different cell defects have different
consequences, e.g. dark area leads to an immediate reduced
power output while a crack can cause a reduced power output
in the future. For this reason, many operators of solar parks
wish an automated detection of defect cells and a further
classification of defect cells into various defect categories in
order to decide which solar modules (not cells) have to be
replaced immediately or in the future. For a first feasibility
study in this paper, we focus on the binary classification of
good and defect cells. The multi-class classification problem
requires a much higher number of labeled defect cells than
currently available and thus will be addressed in the future.

Another result of the perspective imaging is the different
resolution of cell images in the same module before resizing.
In particular, the farthest cells may suffer from a too small
original resolution (e.g. 50 × 50 pixels). It leads to blurred
images where especially small defect structures may be hidden
and hard to detect. This makes an automated analysis even
more challenging.

C. CNN architecture

For the classification task, we adapted the VGG16 architec-
ture [9] for a first feasibility study. More refined architectures
like ResNet [10] will be studied in the future. We reduced the
number of filters and the size of the fully connected layers
to reduce the total number of parameters due to a smaller
number of labeled training samples. Furthermore, we changed
the output layer to fit our two-class problem. In Table II the
architecture is briefly characterized.

We added a batch normalization between the convolution
and the activation layer to speed up the training process and
to be less sensitive to the initialization. The batch normaliza-
tion also acts as regularizer which helps to avoid overfitting
[11]. We used the exponential linear unit (ELU) function
as activation [12]. All layers are regularized with the L2-
norm to prevent overfitting and to enhance the generalization
capability. Also dropout is used in the fully connected (FC)
layers [13]. The weights are initialized with the He normal
method [14].

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2050



TABLE II: Adapted VGG16 network

input (120×120 gray image)
conv3-8
conv3-8
maxpool convx-y:

convolution layer with
x×x filter size and
y feature maps

FC-x:
fully connected layer
with x neurons

conv3-16
conv3-16
maxpool
conv3-32
conv3-3 2
conv3-32
maxpool
conv3-64
conv3-64
conv3-64
maxpool
conv3-64
conv3-64
conv3-64
maxpool
FC-128
FC-128
FC-2

softmax

III. OVERSAMPLING AND AUGMENTATION

A general problem in automated analysis of solar cell
images is the data imbalance. Since EL images are taken
from whole solar modules and since defect cells are relatively
rare and mostly random distributed among modules, there is
always a majority good class and a minority defect class of
cells. A typical problem caused by the data imbalance is the
bad classification accuracy of the minority class despite of a
good performance on the majority class. In our case the false
negatives (i.e. classify a defect cell as good) are much more
critical than the false positives, because cell images which are
classified as good will be never examined again by experts in
fact of their large amount.

One way to combat the imbalance problem is to use a
non-heuristic resampling method [15], [16]. An appropriate
approach is to randomly oversample the minority class, i.e.
using random copies of defect cell images to enlarge the
minority class. This artificially balances the class distribution.
Since oversampling duplicates images, it is prone to overfitting
on the training data.

To reduce overfitting, data augmentation is another approach
[17], [18]. It helps to improve the classification performance
[19], especially for a small amount of training data. By data
augmentation, especially when oversampling is applied before,
a larger dataset is generated. One augmentation method to
increase the diversity of the data is random horizontal and
vertical image flipping.

The cell images extracted from the corrected module images
suffer from small rotation, translation and shearing. To reach
a better generalization for unseen data, the network should
be robust to these transforms. We apply these transforms to
the training images as a further data augmentation step. We
identified the range of typical transform parameters in our
dataset as in Table III.

All transforms, i.e. rotation, translation, shearing and verti-
cal and horizontal flipping, are applied to each image after the
oversampling step using random parameters within the given
range in Table III.

TABLE III: Range of data augmentation parameters.

transformation parameter

rotation ±10 ◦

translation ±10%
shearing ±0.2 rad

IV. DATASET AND EXPERIMENTS

A. Dataset

For a first feasibility study, we use a dataset of 98,280
labeled cell images extracted from 1,366 module images.
The labeling is done by solar cell and EL imaging experts.
Some cells were excluded from the dataset because they have
multiple defect types or they are shaded by surrounding objects
like trees. The dataset was split into 90% training and 10%
validation data. The splitting is done modulewise to generate
a fully unknown validation set. The class distribution of the
dataset is shown in Table IV. Only 3.4% of the cells belong
to the defect class. This indicates the high imbalance of our
dataset.

TABLE IV: Class distribution of a dataset and partition into
training and validation set.

class training validation

good 85513 9474
defect 2915 378

B. Experiments

For the implementation of the image preprocessing steps,
we used OpenCV [20]. To implement and evaluate the CNN
architecture, the minority oversampling and the data augmen-
tation, we used the Keras framework [21].

To normalize the input data, the mean gray value of the
training set was subtracted from each sample of the training
and validation set. We used a dropout ratio of 0.7 in the FC
layers and a L2-regularization constant of 0.01 in all layers.
The cost function is the cross-entropy loss.

The adaptive sub-gradient method Adagrad [22] was
chosen as optimizer. It takes the updates of earlier iterations
into account and helps the CNN to train on the minority class
with its wide distribution. The initial learning rate is set to
0.01 and was divided by 10 after 20 epochs to improve the
convergence. The network was trained with a batch size of
512 over 40 epochs.

To investigate the impact of minority oversampling and data
augmentation to our dataset, we compare the following three
experiments.
(a) Oversampling and no data augmentation

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2051



10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

epoch

B
E

R
training
validation

(a)

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

epoch

B
E

R

training
validation

(b)

10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

epoch

B
E

R

training
validation

(c)

Fig. 4: Results of training and validation BER (a) oversampling, no augmentation, (b) no oversampling, augmentation, (c)
oversampling, augmentation.

(b) No oversampling and data augmentation
(c) Oversampling and data augmentation

When the minority oversampling is applied, the minority
class is enlarged by using multiple copies of defect cell images.
The number of good and defect cell training images have the
ratio 2:1 after oversampling. If the data augmentation is used,
the defect and good cell images are flipped and transformed
randomly according to Table III to enlarge the diversity of
the training images. The training set remains imbalanced.
The transforms are applied to the input images randomly
right before each epoch. In the last experiment (c), both
oversampling and data augmentation are applied leading to
a more balanced training dataset (2:1) with enlarged diversity.

To compare the results, we focus on the balanced error rate
(BER), the false positive rate (FPR) and the false negative
rate (FNR), i.e classifying good/defect cells as defect/good,
respectively. The main target is to keep the FNR as low as
possible while having a low BER, because as defect classified
cells can be checked by experts and as good classified cells
will never be examined again.

V. RESULTS

The impact of the class imbalance is clearly shown in Fig. 4
and Table V. The trained network with minority oversampling
or data augmentation alone fails to correctly detect defects
as shown by the FNR of 50.26% or 38.89% while most of
the good cells are classified correctly. This is caused by the
imbalanced dataset where the CNN suffers from overfitting
and tends to decide for the majority of good cells.

By using only oversampling, the network performs quite
well on the training set as indicated by the fast converged
and low training BER (see Fig. 4a). However, the result on
the validation set is poor. This means, the trained network is
overfitted. The oversampling helps to train on both classes,
but due to low variations with multiple copies of the minority
class in the training set, the network is not able to generalize
well.

Using data augmentation without oversampling helps to
reduce the FPR and the FNR, but still a large value of
FNR causes the high BER of 19.57% (see Fig. 4b). The

data augmentation, the small random variations of the cell
images, enhances the diversity of the training images, but not
the number of minority training samples. Hence the dataset
remains imbalanced.

When we combine both methods, the overfitting to the
training set caused by the oversampling is suppressed by the
data augmentation and the oversampling helps the network
to train on the minority class. The training and validation
BER decrease relatively fast and converge to almost the same
value of around 7% with a low variance (see Fig. 4c). This is
caused by the better classification capability for the class of
defect cells, indicated by an FNR improvement from 50.26%
and 38.89% to 12.96%. Since minimizing the FNR is more
important than avoiding misclassification of good cells, we can
tolerate the slightly increased FPR.

TABLE V: Comparison of the results on the validation set and
the ratio between good and defect training cell images.

method BER FNR FPR ratio

oversampling 25.40% 50.26% 0.53% 2 : 1
augmentation 19.57% 38.89% 0.25% 9 : 1

both 7.73 % 12.96 % 2.50% 2 : 1

VI. CONCLUSION

In this paper we demonstrated a first feasibility study for the
detection of defect solar cells. We succeeded to extract cells
from perspective solar module images and classify the cell
images by using a CNN in a fully automated way. In particular,
we studied the data imbalance problem and compared different
methods to address the issue. In a real experiment, we achieved
a BER of 7.73% for the binary classification problem.

In the future, we will address the more challenging multi-
class classification problem (different defect classes) with an
even more serious imbalanced dataset. More advanced data
augmentation techniques (e.g. generative adversarial network
(GAN) [23]), refined CNN architectures (e.g. ResNet [10])
and other learning strategies (e.g. ensemble learning) will be
studied to address the issue.
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