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Abstract—It is well-known that a number of convolutional
neural networks (CNNs) generate checkerboard artifacts in both
of two processes: forward-propagation of upsampling layers and
backpropagation of convolutional layers. A condition to avoid the
checkerboard artifacts is proposed in this paper. So far, checker-
board artifacts have been mainly studied for linear multirate
systems, but the condition to avoid checkerboard artifacts can
not be applied to CNNs due to the non-linearity of CNNs. We
extend the avoiding condition for CNNs, and apply the proposed
structure to some typical CNNs to confirm the effectiveness of the
new scheme. Experiment results demonstrate that the proposed
structure can perfectly avoid to generate checkerboard artifacts,
while keeping excellent properties that the CNNs have.

Index Terms—Convolutional Neural Networks, Checkerboard
Artifacts

I. INTRODUCTION

This paper addresses the problem of checkerboard artifacts in
convolutional neural networks (CNNs). Recently, CNNs have
been widely studying in a variety of computer vision tasks
such as image classification [1], [2], semantic segmentation
[3], [4], super-resolution [5]–[7] and image generation [8],
and have achieved state-of-the-art performances. However,
the CNNs often generate periodic artifacts, referred to as
checkerboard artifacts, in both of two processes: forward-
propagation of upsampling layers and backpropagation of
convolutional layers [9].

In CNNs, it is well-known that checkerboard artifacts are
generated by operations of deconvolution [10], sub-pixel con-
volution [11] layers. To overcome these artifacts, smoothness
constraint [12], post-processing [13], initialization scheme [14]
and different upsampling layer designs [9], [15], [16] have
been proposed. Most of them can not avoid checkerboard
artifacts perfectly, although they reduce the artifacts. Among
them, Odena et al. [9] have demonstrated that checkerboard
artifacts can be perfectly avoided by using resize convolution
layers instead of deconvolution ones. However, the resize
convolution layers can not be directly applied to upsampling
layers such as deconvolution and sub-pixel convolution ones,
so this method needs not only large memory but also high
computational costs. In addition, this method can not be
applied to the backpropagation of convolutional layers.

On the other hand, checkerboard artifacts have been stud-
ied to design linear multirate systems including filter banks
and wavelets [17]–[20]. In addition, it is well-known that
checkerboard artifacts are caused by the time-variant property
of interpolators in multirate systems, and the condition for
avoiding these artifacts have been given [17]–[19]. However,

the condition to avoid checkerboard artifacts for linear systems
can not be applied to CNNs due to the non-linearity of CNNs.

Because of such a situation, in this paper, we extend the
avoiding condition for CNNs, and apply the proposed structure
to some typical CNNs to confirm the effectiveness of the
new scheme. Experiment results demonstrate that the proposed
structure can perfectly avoid to generate checkerboard artifacts
caused by both of the two processes, while keeping excellent
properties that the CNNs have. As a result, it is confirmed that
the proposed structure allows us to offer CNNs without any
checkerboard artifacts.

II. PREPARATION

Checkerboard artifacts in CNNs and works related to checker-
board artifacts are reviewed, here.

A. Checkerboard Artifacts in CNNs

In CNNs, it is well-known that checkerboard artifacts are
caused by two processes: forward-propagation of upsampling
layers and backpropagation of convolutional layers. This paper
focuses on these two issues in CNNs.

When CNNs include upsampling layers, there is a possibil-
ity that the CNNs generate some checkerboard artifacts that
is the first issue, referred to as issue A. Deconvolution [10],
sub-pixel convolution [11] and resize convolution [9] layers
are well-known as upsampling layers, respectively.

Checkerboard artifacts are also generated by the backward
pass of convolutional layers that is the second issue, referred to
as issue B. We will mainly consider issue A in the following
discussion, since issue B is reduced to issue A under some
conditions.

CNNs are illustrated in Fig. 1 for an SR problem, as in
[11], where the CNNs consist of two convolutional layers
and one upsampling layer. ILR and f

(l)
c (ILR) are an low-

resolution (LR) image and a c-th channel feature map at
layer l, and f(ILR) is an output of the network. The two
convolutional layers have learnable weights, biases, and ReLU
as an activation function, respectively, where the weight at
layer l has Kl ×Kl as a spatial size and Nl as the number of
feature maps.

There are numerous algorithms for computing upsampling
layers, such as deconvolution [10], sub-pixel convolution [11]
and resize convolution [9] ones, which are widely used as
typical CNNs.
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Fig. 1: CNNs with an upsampling Layer

B. Works Related to Checkerboard Artifacts

Checkerboard artifacts have been discussed to design multirate
systems including filter banks and wavelets by researchers
[17]–[20]. However, most of the works have been limited to
in case of using linear systems, so they can not be directly
applied to CNNs due to the non-linearity. Some works related
to checkerboard artifacts for linear systems are summarized,
here.

It is known that linear interpolators which consist of up-
samplers and linear time-invariant systems cause checkerboard
artifacts due to the periodic time-variant property [17]–[19].
Figure 2 illustrates a linear interpolator with an up-sampler
↑ U and a linear time-invariant system H(z), where positive
integer U is an upscaling factor and H(z) is the z transfor-
mation of an impulse response. The interpolator in Fig. 2(a)
can be equivalently represented as a polyphase structure as
shown in Fig. 2(b). The relationship between H(z) and Ri(z)
is given by

H(z) =
U∑
i=1

Ri(z
U )z−(U−i), (1)

where Ri(z) are often referred to as a polyphase filter of the
filter H(z).

The necessary and sufficient condition for avoiding the
checkerboard artifacts in the system is shown as

R1(1) = R2(1) = · · · = RU (1) = G. (2)

This condition means that all polyphase filters have the same
DC value i.e. a constant G [17]–[19]. Note that each DC
value Ri(1) corresponds to the steady-state value of the unit
step response in each polyphase filter Ri(z). In addition, the
condition eq.(2) can be also expressed as

H(z) = P (z)H0(z), (3)

where,

H0(z) =

U−1∑
i=0

z−i, (4)

H0(z) and P (z) are an interpolation kernel of the zero-order
hold with factor U and a time-invariant filter, respectively.
Therefore, the linear interpolator with factor U does not gen-
erate any checkerboard artifacts, when H(z) includes H0(z).
In the case without checkerboard artifacts, the step response
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Fig. 2: Linear interpolators with upscaling factor U

of the linear system has a steady-state value G as shown in
Fig. 2(a). Meanwhile, the step response of the linear system
has a periodic steady-state signal with the period of U , such
as R1(1), ..., RU (1), if eq.(3) is not satisfied.

III. PROPOSED METHOD

CNNs are non-linear systems, so conventional works related to
checkerboard artifacts can not be directly applied to CNNs. A
condition to avoid checkerboard artifacts in CNNs is proposed,
here.

A. CNNs with Upsampling Layers

We focus on upsampling layers in CNNs, for which there are
numerous algorithms such as deconvolution [10], sub-pixel
convolution [11] and resize convolution [9]. For simplicity,
one-dimensional CNNs will be considered in the following
discussion.

It is well-known that deconvolution layers with non-unit
strides cause checkerboard artifacts [9]. Figure 3 illustrates
a system representation of deconvolution layers [10] which
consist of some interpolators, where Hc and b are a weight
and a bias in which c is a channel index, respectively. The
deconvolution layer in Fig. 3(a) can be equivalently repre-
sented as a polyphase structure in Fig. 3(b), where Rc,n is a
polyphase filter of the filter Hc in which n is a filter index.
This is a non-linear system due to the bias b.

Figure 4 illustrates a representation of sub-pixel convolution
layers [11], where Rc,n and bn are a weight and a bias,
and f ′

n(ILR) is an intermediate feature map in channel n.
Compared Fig.3(b) with Fig.4, we can see that the polyphase
structure in Fig. 3(b) is a special case of sub-pixel convolution
layers in Fig. 4. In other words, Fig. 4 is reduced to Fig.
3(b), when satisfying b1 = b2 = ... = bU . Therefore, we will
focus on sub-pixel convolution layers as the general case of
upsampling layers to discuss checkerboard artifacts in CNNs.

B. Checkerboard Artifacts in Upsampling Layers

Let us consider the unit step response in CNNs. In Fig. 1,
when the input ILR is the unit step signal Istep, the steady-
state value of the c-th channel feature map in layer 2 is given
as

f̂ (2)
c (Istep) = Ac, (5)
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Fig. 3: Deconvolution layer [10]
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Fig. 4: Sub-pixel convolution layer [11]

where Ac is a positive constant value, which is decided by
filters, biases and ReLU. Therefore, from Fig. 4, the steady-
state value of the n-th channel intermediate feature map is
given by, for sub-pixel convolution layers,

f̂ ′
n(Istep) =

N2∑
c=1

AcRc,n + bn, (6)

where Rc,n is the DC value of the filter Rc,n.
Generally, the condition,

f̂ ′
1(Istep) = f̂ ′

2(Istep) = ... = f̂ ′
U (Istep), (7)

is not satisfied, so the unit step response f(Istep) has a
periodic steady-state signal with the period of U . To avoid
checkerboard artifacts, eq.(7) has to be satisfied, as well as
for linear multirate systems.

C. Upsampling Layers without Checkerboard Artifacts

To avoid checkerboard artifacts, CNNs must have the non-
periodic steady-state value of the unit step response. From
eq.(6), eq.(7) is satisfied, if

Rc,1 = Rc,2 = · · · = Rc,U , c = 1, 2, ..., N2 (8)

b1 = b2 = · · · = bU , (9)

Note that, in this case,

f̂ ′
1(K · Istep) = f̂ ′

2(K · Istep) = ... = f̂ ′
U (K · Istep), (10)

is also satisfied as for linear systems, where K is an arbitrary
constant value. However, even when each filter Hc in Fig.4
satisfies eq.(3), eq.(9) is not met, but eq.(8) is met. Therefore,
we have to seek for a new insight to avoid checkerboard
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Fig. 5: Proposed upsampling layer structure without checker-
board artifacts

artifacts in CNNs.
In this paper, we propose to add the kernel of the zero-order

hold with factor U , i.e. H0 in eq.(4), after upsampling layers
as shown in Fig. 5. In this structure, the output signal from
H0 can be a constant value, even when an arbitrary periodic
signal is inputted to H0. As a result, Fig. 5 can satisfy eq.(7).

There are two approaches to use H0 in CNNs as follows.

1) Training CNNs with H0

The first approach for avoiding checkerboard artifacts, called
approach 1, is to add H0 to CNNs as shown in Fig. 5, and
then the CNNs with H0 are trained. This approach allows us
to perfectly avoid checkerboard artifacts generated by CNNs.

2) Training CNNs with H0 inside upsampling layers

Approach 2 is applicable to only deconvolution layers, al-
though approach 1 is available for both of deconvolution layers
and sub-pixel convolution ones. Deconvolution layers always
satisfy eq.(9), so eq.(8) only has to be considered. Therefore,
CNNs do not generate any checkerboard artifacts when each
filter Hc in Fig.5 satisfies eq.(3). In approach 2, checkerboard
artifacts are avoided by convolving each filter Hc with the
kernel H0 inside upsampling layers.

D. Checkerboard Artifacts in Gradients

It is well-known that checkerboard artifacts are also gener-
ated in gradients of convolutional layers, since operations of
deconvolution ones are carried out on the backward pass to
compute the gradients. Therefore, both of approaches 1 and
2 are available to avoid the checkerboard artifacts, as well as
for deconvolution layers. Note that, for approach 1, we have
to add the kernel of the zero-order hold before convolutional
layers to avoid checkerboard artifacts on the backward pass.

It is also well-known that max-pooling layers cause high-
frequency artifacts in gradients [9]. However, these artifacts are
generally different from checkerboard artifacts, so this paper
does not consider these high-frequency artifacts.

IV. EXPERIMENTS AND RESULTS

The proposed structure without checkerboard artifacts was
applied to some typical CNNs to demonstrate the effectiveness.
In the experiments, two tasks: super-resolution and image
classification were carried out.

A. Super-Resolution

1) Datasets for Training and Testing

We employed 91-image set from Yang et al. [21] as our
training dataset. In addition, the same data augmentation
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Fig. 6: Experimental results of super-resolution under perceptual loss (PSNR(dB))

TABLE I: CNNs used for super-resolution tasks

Network Name Upsampling Layer K3 ×K3

Deconv Deconvolution [10] 9× 9
Sub-pixel Sub-pixel Convolution [11] 3× 3
ResizeConv Resize Convolution [9] 9× 9
Deconv+H0 (Ap. 1) Deconvolution with H0 ( Approach 1 ) 9× 9
Deconv+H0 (Ap. 2) Deconvolution with H0 ( Approach 2 ) 9× 9
Sub-pixel+H0 Sub-pixel Convolution with H0 ( Approach 1 ) 3× 3

(rotation and downscaling) as in [22] was used. As a result,
the training dataset consisting of 1820 images was created
for our experiments. Besides, we used two datasets, Set5 [23]
and Set14 [24], which are often used for benchmark, as test
datasets.

To prepare a training set, we first downscaled the ground
truth images IHR with a bicubic kernel to create the LR
images ILR, where the factor U = 4 was used. The ground
truth images IHR were cropped into 72 × 72 pixel patches
and the LR images were also cropped 18 × 18 pixel ones,
where the total number of extracted patches was 8, 000. In the
experiments, the three channels of RGB images were used.

2) Training Details

Table I illustrates CNNs used in the experiments, which were
carried out based on CNNs in Fig. 1. For other two layers
in Fig. 1, we set (K1, N1) = (5, 64), (K2, N2) = (3, 32) as
in [11]. In addition, the training of all networks was carried
out to minimize the perceptual loss 1

2∥ϕ(IHR)−ϕ(f(ILR))∥2
averaged over the training set, where ϕ calculates feature
maps at the fourth layer of the pre-trained VGG-16 model
as in [13]. It is well-known that the perceptual loss results in
sharper SR images despite lower PSNR values, and generates
checkerboard artifacts more frequently than under the mean
squared error (MSE) loss. Note that Deconv+H0 (Ap. 1),
Deconv+H0 (Ap. 2) and Sub-pixel+H0 in Table I use the
proposed structure.

For training, Adam [25] with β1 = 0.9, β2 = 0.999 was
employed as an optimizer. Besides, we set the batch size to 4
and the learning rate to 0.0001. The weights were initialized
with the method described in He et al. [26]. We trained all
models for 200K iterations. All models were implemented by
using the tensorflow framework [27].

TABLE II: Execution time of super-resolution (sec)
Resolution

Deconv
Deconv+H0 Deconv+H0

of Input Image ( Ap. 1 ) ( Ap. 2 )

69× 69 0.00871 0.0115 0.0100
125× 90 0.0185 0.0270 0.0227
128× 128 0.0244 0.0348 0.0295
132× 164 0.0291 0.0393 0.0377
180× 144 0.0343 0.0476 0.0421

Resolution
Sub-pixel

Sub-pixel+H0 ResizeConv
of Input Image ( Ap. 1 )

69× 69 0.0159 0.0242 0.107
125× 90 0.0398 0.0558 0.224
128× 128 0.0437 0.0619 0.299
132× 164 0.0696 0.0806 0.383
180× 144 0.0647 0.102 0.450

TABLE III: CNNs used for image classification tasks

Network Name Downsampling Layer Stride
StridedConv Convolution 2
StridedConv+H0 (Ap. 1) Convolution with H0 ( Approach 1 ) 2
StridedConv+H0 (Ap. 2) Convolution with H0 ( Approach 2 ) 2

3) Experimental Results

Figure 6 shows examples of SR images, where mean PSNR
values for each dataset are also illustrated. In this figure, (c)
and (g) include checkerboard artifacts, although (d), (e), (f),
(h) and (i) do not include any ones. Moreover, it is shown
that the quality of SR images was significantly improved by
avoiding checkerboard artifacts. Note that ResizeConv does
not generate any checkerboard artifacts, because it uses a pre-
defined interpolation like in [5].

Table II illustrates the average executing time when each
CNNs were carried out 10 times for some images in Set14.
ResizeConv needs the highest computational cost in this table,
although it does not generate any checkerboard artifacts.
From this table, the proposed structures have much lower
computational costs than with resize convolution layers. Note
that the result was tested on PC with a 3.30 GHz CPU and
the main memory of 16GB.

B. Image Classification

1) Datasets for Training and Testing

We employed two datasets, CIFAR10 and CIFAR100, which
contain 32 × 32 pixel color images and consist of 50, 000
training images and 10, 000 test images [28]. Besides, the
standard data augmentation (mirroring and shifting) was used.
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(a) StridedConv (b) StridedConv+H0 (Ap. 1) (c) StridedConv+H0 (Ap. 2)

Fig. 7: Gradients computed in the first downsampling layer

TABLE IV: Error rates on CIFAR10, CIFAR100 datasets (%)

Network CIFAR10 CIFAR10+ CIFAR100+

StridedConv 12.75 6.13 32.72
StridedConv+H0 (Ap. 1) 16.44 10.08 34.91
StridedConv+H0 (Ap. 2) 11.21 5.85 29.34

For the preprocessing, the images were normalized by using
the channel means and standard deviations.

2) Training Details

Table III illustrates CNNs used in the experiments, which were
carried out based on ResNet-110 [2]. Note that the projection
shortcut [2] was used only for increasing dimensions, and all
convolutional layers with stride 2 in ResNet-110 were replaced
by downsampling layers in Table III.

All the networks were trained using stochastic gradient
descent (SGD) with momentum for 300 epochs. The learning
rate was initially set to 0.1, and decreased by a factor of
10 at 150 and 225 epochs. The weights were initialized by
the method introduced in [26]. We used the weight decay of
0.0001, the momentum of 0.9 and the batch size of 64.

3) Experimental Results

Figure 7 shows examples of gradients, which were computed
on the backward pass of the first downsampling layer, for
each CNNs. In this figure, (a) includes checkerboard artifacts,
although (b) and (c) do not include any ones.

The results on CIFAR10 and CIFAR100 are illustrated in
Table IV, where “+” indicates the use of the standard data
augmentation. It is shown that approach 2 provided the best
performance in this table. This trend is almost the same as for
super-resolution tasks.

V. CONCLUSION

This paper has addressed a condition to avoid checkerboard
artifacts in CNNs. The experimental results have demonstrated
that the proposed structure can perfectly avoid to gener-
ate checkerboard artifacts caused by both of two processes:
forward-propagation of upsampling layers and backpropaga-
tion of convolutional layers, while keeping excellent properties
that the CNNs have. As a result, the proposed structure allows
us to offer CNNs without any checkerboard artifacts.
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