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Abstract—Polarimetric multi-view stereo (PMS) reconstructs
the dense 3D surface of a feature sparse object by combining
the photometric information from polarization with the epipolar
constraints from multiple views. In this paper, we propose a new
approach based on the recent advances in graph signal processing
(GSP) for efficient ambiguity resolution in PMS. A smooth
graph which effectively captures the relational structure of the
azimuth values is constructed using the estimated phase angle.
By visualizing the actual azimuth available at the reliable depth
points (corresponding to the feature-rich region) as sampled
graph signal, the azimuth at the remaining feature-limited region
is estimated. Unlike the existing ambiguity resolution scheme
in PMS which resolves only the π/2-ambiguity, the proposed
approach resolves both the π and π/2-ambiguity. Simulation
results are presented, which shows that in addition to resolving
both the ambiguities, the proposed GSP based method performs
significantly better in resolving the π/2-ambiguity than the
existing approach.

Index terms— Shape from Polarization, Polarimetric multi-
view stereo, azimuth ambiguity, Graph signal processing

I. INTRODUCTION

Multi-view 3D surface reconstruction is an important prob-
lem in computer vision whose application includes 3D scan-
ning and printing, Augmented reality including products in-
spection [1] and many more. In many of these applications,
it is most desirable to obtain dense reconstruction. However,
on a feature sparse 3D objects, typical multi-view 3D recon-
struction methods such as multi-view stereo (MVS) [1] fails
to provide dense reconstruction, since it is essentially based
on feature correspondence. On the other hand, the alterna-
tive photometric stereo method [2] requires active/controlled
illumination for surface reconstruction. Now, when an unpo-
larized light is incident on a surface, most surfaces reflect
a partially polarized light [3]. This polarized light contains
rich information about the surface normal of the object and
forms the basis for shape from polarization (SfP) cue [4]. The
surface normal, thus obtained from employing this technique
is dense and unlike the other above mentioned techniques, it
doesn’t require controlled illuminations or dense features, and
hence can densely reconstruct smooth featureless 3D objects.
However, the surface normals obtained from the polarization
cue has certain ambiguities, which must be resolved before it
can meaningfully be used for shape reconstruction.

One of the main ambiguity in using this SfP approach is
in the estimation of azimuth from phase angle. Two types
of ambiguities referred as π-ambiguity and π/2-ambiguity
must be resolved for azimuth estimation (refer Section II for
more details). While π-ambiguity arises due to the inherent
estimation equation, π/2-ambiguity appears because of the
unknown a priori knowledge of the nature of reflection; i.e.,
whether polarized specular reflection or the polarized diffuse

reflection (again, Section II contains more details). Since this
ambiguity being an important one to be resolved for azimuth
estimation, many methods have been proposed in literature. To
resolve the π-ambiguity, prior works used additional cues such
as RGB-D sensor in [5] or the lighting direction [6]. Several
papers simplify the π/2-ambiguity by assuming either only the
polarized diffuse reflection or the polarized specular reflection
such as in [4] and [7] respectively. However, in practice this
is impractical [8] and as clearly demonstrated in [9], usually
a mixture of both the polarized diffuse and polarized specular
components shall exist. Hence, very recently, [9] proposed
a new framework referred as polarimetric multi-view stereo
(PMS) for dense surface reconstruction on feature sparse
objects. [9] doesn’t make use of the impractical assumption of
polarized diffuse only or polarized specular only reflection and
also overcomes the the necessity of lighting direction or the
additional sensor such as RGB-D sensor. It resolves the π/2-
ambiguity at feature-limited regions by using the reliable depth
points at feature-rich regions which are obtained using the
epipolar constraints from multiple views. [9] however doesn’t
resolve the π-ambiguity and bypasses it by directly estimating
the depth based on the iso-contour depth tracing technique
[10] using the reliable depth points as anchor points.

In this paper, we propose an alternative efficient method
for ambiguity resolution in PMS framework. We effectively
capture the relational structure among the azimuth values
by a graph and using the recent advances in graph signal
processing (GSP) the ambiguities are resolved. This relational
graph itself is constructed using the estimated phase angle
and by making use of the synonymity of the local absolute
variation of the known phase angle field and the azimuth
field; Section III contains the detailed description. By now
visualizing the azimuth values (corresponding to reliable depth
points) available at feature-rich region as sampled graph signal,
we estimate the azimuth at feature-limited regions by using
the underlying graph topology and graph signal reconstruction
techniques [11]. The azimuth thus obtained, unlike in [9],
shall be resolved of not only the π/2-ambiguity but also the
π-ambiguity. Now with this estimated azimuth, one can use
the iso-contour depth tracing method advocated in [9] for
depth estimation. Alternately, the regions corresponding to the
polarized specular dominant and polarized diffuse dominant
regions can be classified and by employing methods described
in [8], [7], the zenith angle can be estimated. Subsequently
from this (azimuth, zenith) pair, depth can be estimated using
a host of techniques available in the literature. Hence, with
this proposed approach, the user shall have multiple choices
for surface reconstruction in PMS framework. In addition, as
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shall be demonstrated in Section IV through simulations that
the proposed GSP based ambiguity resolution approach shows
significant improvement in resolving the π/2-ambiguity than
that of the label propagation approach of [9].

II. PRELIMINARIES

In this section, we briefly present preliminaries on GSP, SfP
and PMS for the sake of completeness.
A. Graph signals

Graph signals are signals whose samples are indexed by
the nodes of the graph G. G = (V, E) denote a connected,
undirected and weighted graph consisting of N nodes in-
dexed by set V = {1, 2, ..., N} and connected by edges
E = {(p, q, wpq)}, p, q ∈ V , where wpq denotes the weight
of the edge between pth and the qth node and wpp = 0. The
N×N adjacency matrix W with [W]p,q = wpq is a symmetric
matrix (i.e., W ∈ SN ), due to the assumption of undirected
graph [11]. The graph Laplacian is defined as L = D −W,
where the diagonal matrix D = diag{d1, d2, ..., dN} is referred
as degree matrix, and for all 1 ≤ p ≤ N , dp =

∑N
q=1[W]p,q .

1) Graph Fourier Transform, Band-limitedness, sampling
and reconstruction: In traditional discrete signal processing
(DSP), the role played by the shift z−1 is well known; a
similar role in GSP is performed by the graph shift op-
erator S. The typical choices for S usually include either
the Laplacian matrix or the adjacency matrix [12], [11].
Since S is a symmetric matrix, it admits the factorization
S = [u1, ...,uN ]diag(λ1, ..., λN )[u1, ...,uN ]H . The eigen-
vector matrix U = [u1, ...,uN ] and the corresponding eigen-
values λ = {λ1, ..., λN} provide a notion of frequency in
the context of graphs and hence the matrices UH and U are
referred as forward Graph Fourier Transform (GFT) matrix
and inverse GFT matrix [11]. Now, the GFT of any graph
signal f can be computed as f̃ = UH f.

If f̃p = 0 for all p with |λp| > ω then f is referred as
ω-bandlimited graph signal. Let R = {1, 2, ..., r}, where r
denotes the number of eigenvalues that are less than ω and
UVR denote the sub-matrix of U containing the columns
corresponding to R. Now, the ω-bandlimited signal f can be
expressed as [13]

f = UH f̃ = UVRf̃. (1)

The set {u1,u2, ...,ur} spans a vector space which is referred
as Paley-Wiener space [14] denoted by PWω(G) and essen-
tially it consists of all ω-bandlimited signals.

The bandlimitedness allows the signal f to be sampled and
reconstructed without any loss of information. Let S denote
the sampling set i.e., it contains the indexes of the sampling
nodes1, with |S| = d. Let Sd be a matrix of size N × d
whose columns are indicator functions for S and the sampling
operator STd : RN → Rd [13]. The sampled vector fS = STd f.
Correspondingly, reconstruction from the sampled signal fS
can be achieved as [15], [13]

f̂ = (UVR(UHSRUSR)−1UHSR)fS (2)

1Interested readers may refer to [13] and the references there-in for a
detailed description of selection of the sampling set S.

where the sub-matrix USR = STd UVR. From the dimension
of the matrices USR and UVR, it can easily be noticed that
d ≥ r is a basic requirement for reconstruction.

B. Shape from Polarization

When an unpolarized light strikes a material surface, on
most surfaces, the reflected light comprises of the following
three components: 1) polarized specular reflection, 2) polarized
diffuse reflection, and 3) the unpolarized diffuse reflection
[16]. The intensity of such reflected polarized components
varies sinusoidally as a function of the polarizing angle of the
polarizing filter say φpol. In particular, the measured intensity
corresponding to the polarized diffused reflection Idp(φpol)
and the polarized specular reflection Isp(φpol) at a point can
be expressed as [5], [6]

Ixp(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos(2(φpol − φ))

(3)
where x ∈ {s, d}, and Imax, Imin denotes the maximum
and the minimum values of the observed sinusoidally varying
intensities respectively. The phase angle φ and the azimuth
angle ϕ at any point on the surface depends upon the dominant
reflection type and are related as [9]

φ =

{
ϕ, if polarized diffuse reflection dominates
ϕ− π

2 , otherwise.
(4)

The factor Iun = Imax+Imin

2 denotes the unpolarized intensity
and the factor ρ = Imax−Imin

Imax+Imin
, is referred as degree of

polarization (DOP) [8]. Now, depending upon the type of the
reflection i.e., either polarized diffuse or polarized specular,
the DOP ρ is also related as [8]

ρ =
2 sin θ tan θ

√
n2 − sin2 θ

n2 − 2 sin2 θ + tan2 θ
(5)

ρ =
(n− 1

n )
2 sin2 θ

2 + 2n2 − (n+ 1
n )

2 sin2 θ + 4 cos θ
√
n2 − sin2 θ

(6)

where n and θ denotes the refractive index and the zenith
angle respectively. While (5) provides the relationship for the
polarized specular reflection, (6) provides the relationship for
a polarized diffuse reflection. The following section describes
the parameter estimation, in particular azimuth estimation2

from the above equations and the associated ambiguities.
1) Azimuth estimation and ambiguities: By taking intensity

measurements corresponding to atleast three different known
polarization angles, the unknown triple {Imax, Imin, φ} at
every pixel can be estimated by solving (3). However, the
following two ambiguities; π-ambiguity and π/2-ambiguity
[9], [8] in the estimated phase φ must be resolved for azimuth
estimation. While the π-ambiguity appears due to the factor
2 present in the cosine term of (3) (notice that both φ = ϕ
and φ = ϕ + π results in the same solution), the absence
of the knowledge of the reflection type (i.e., either polarized
diffuse or polarized specular (see (4))) would give rise to

2In this paper, we focus on azimuthal ambiguity resolution. Readers may
refer to [8] for refractive index ambiguity and its resolution from multi-view
images.
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π/2-ambiguity. As mentioned in Section I, prior works use
additional cues for π-ambiguity resolution and simplify the
π/2-ambiguity by assuming either only the polarized diffuse
or the polarized specular reflection. PMS [9], on the contrary,
doesn’t make these impractical assumptions and also avoids
the necessity of additional sensor. The following section briefly
describes the PMS.

2) Polarimetric Stereo: PMS, essentially aims to recon-
struct the dense 3D surface on feature sparse objects. Further
as mentioned above, [9] uses a practical setting of mixed
reflection scenario (i.e., the observed polarization intensity
I = Idp + Isp) and in particular showed that “no matter
what the relative proportions of the polarized specular and
polarized diffused reflection is, there will only be π and π/2-
ambiguity in azimuth estimation”. The idea of PMS setup is
to capture multiple polarization images from multiple views
(see [9, Figure 4]) and using the MVS method [1], a rough
initial 3D shape is obtained. Since MVS methods makes
use of the feature correspondence for shape estimation, the
rough 3D estimated shape shall be reliable at only feature-
rich regions. Now, for the other feature-limited regions, it uses
the polarization images by resolving only the π/2-ambiguity
with the help of the initial 3D shape. However, [9] bypasses
resolving the π-ambiguity and directly estimates the depth
based on the iso-contour depth tracing technique [10] with
the reliable depth available at feature-rich regions as anchor
points.

In the following section, by considering the azimuth at
feature-rich regions as sampled signal on a graph constructed
using estimated phase, we describe a new method for both π
and π/2-azimuth ambiguity resolution.

III. PROPOSED METHOD

A. Modified Polarimetric multi-view stereo

Fig. 1 shows the proposed modified PMS algorithm pipeline.
Similar to [9], multiple polarized images at known different
polarizing angles are captured from multiple view points of the
object. Again similar to [9] by employing the standard MVS
algorithm [1], initial approximate 3D shape is obtained. Since
it is well known that these techniques are based on feature
correspondence, this step shall provide a reasonably good
estimate at the feature-rich regions. To reconstruct the shape at
other feature-limited regions we make use of the polarization
images. From the captured polarization images, the triple
{Imax, Imin, φ} at every point and at every view is estimated
by solving (3). Now, as shall be described in the next section,
the azimuth ϕ is estimated from the phase angle φ by resolving
both the π and π/2 ambiguities using the initial 3D shape.
By comparing the φ and ϕ, the polarized specular reflection
dominant and the polarized diffuse reflection dominant regions
can easily be classified. Based on this classification, using
prior works such as [8], zenith θ (using (5) or (6)) can be
obtained as indicated in Fig. 1. Using the pair (ϕ, θ), one can
now easily estimate the depth by standard surface integration
or alternately use only ϕ with the iso-contour depth tracing
approach suggested in [9].

B. Resolving the π and π/2 ambiguity

The idea is to estimate the azimuth values at feature-
limited region by using the known azimuth values at feature-
rich region by exploiting the relational structure among the
azimuth values. The rest of this section describes the proposed
approach for building the graph to effectively capture the
relationship and to use it for azimuth estimation.

1) Graph Construction: It is important to note the follow-
ing two observations:
i) With only the polarized diffuse or the polarized specular
reflection, the absolute change of the phase angular field and
azimuth field is synonymous i.e., the absolute angular distance
among the respective phase angle values and azimuth values
in a small neighborhood region is similar.
ii) However, the change in the reflection type on the object
causes abrupt change in the phase angular field by π/2.
Now by using the estimated phase angle values and by utilizing
the above observations, we build a graph which effectively
captures the relational structure among the azimuth values.

Let Nx × Ny be the captured polarization image size and
N = NxNy denote the number of pixels in the image. An
N node graph indexed by the set V = {1, 2, ..., N} is first
constructed. Now, for any p, (1 ≤ p ≤ N ), φp denotes the
phase angle at node p and further, between any two nodes
(p, q) ∈ V, p 6= q, the edge weight wpq is computed as

wpq =

{
g(φp, φq), if g(φp, φq) < εg and dist(p, q) < εd

0, otherwise
(7)

where the function g(φp, φq) = min(|φi−φj+π/2|, |φi−φj−
π/2|, |φi − φj |) and dist(p, q) denotes the Euclidean distance
between the position of the pixels p and q. g(φp, φq) computes
the distance between the two angles φp and φq and it can
easily be noticed that it is invariant to the change in the phase
angle π/2 due to change in reflection type. The factors εg
and εd decides the neighborhood region. Now, using these
edge weights, the remaining attributes of the graph such as
the graph Laplacian L, the GFT matrix U are estimated as
described in Section II-A. The following section describes the
method for obtaining the azimuth using these graph attributes.

2) Estimation of azimuth: Now, let φ,ϕ ∈ RN denote
a vector of phase angles and azimuth respectively which
can be expressed as φ = [φ1, φ2, ..., φN ]T and ϕ =
[ϕ1, ϕ2, ..., ϕN ]T , where for any p, (1 ≤ p ≤ N) similar to φp,
ϕp denotes the azimuth at node p. Knowing φ, the graph and
azimuth at feature-rich region, the problem now is to estimate
ϕ,

The GFT of φ and ϕ can be computed as φ̃ = Uφ and
ϕ̃ = Uϕ. Recalling that φ is nothing but the ambiguous
estimate of ϕ, it is easy to notice that with the graph edge
constructed using (7), both φ̃ and ϕ̃ have similar smoothness3,
i.e., both have same cut-off frequency ω or in other words
φ̃, ϕ̃ ∈ PWω(G). Let V+ denote the set of vertexes corre-
sponding to feature-rich regions for which a reliable depth
information, thereby unambiguous azimuth is available. The

3smoothness assumption on graph signals is formalized in terms of ban-
dlimitedness, for more details interested readers may refer to [13].
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Fig. 1: Flow chart of the proposed modified polarimetric multi-view stereo algorithm pipeline. With this proposed approach the user can either obtain the
depth directly from azimuth using the approach of [9] or get the surface normal.

graph signal φV+ ⊂ φ, ϕV+ ⊂ ϕ denotes the phase angles
and the azimuth respectively corresponding to graph indexes
V+. Since the phase angle corresponding to the set V+ is
unambiguous, ϕV+ = φV+ . Now, it is important to observe
that the set V+ and signal ϕV+ is analogous to the sampling
set S and the sampled graph signal fS (see Section II-A).
From this analogy and the sampled azimuth ϕV+ , using (2),
the azimuth signal ϕ can be estimated as

ϕ = (UVR(UHV+RUV+R)
−1UHV+R)ϕV+ (8)

where UV+R is similar to USR and the set R can be found
by observing the GFT spectrum φ̃, since φ̃, ϕ̃ ∈ PWω(G)
as mentioned above. In practice, it is important to note that
the cut-off ω is determined by putting a threshold on the
spectrum of φ̃, since spectrum doesn’t exactly go to zero.
The estimated ϕ using the above equation will be resolved
of not only the π/2-ambiguity but also the π-ambiguity. As
mentioned in Section II-A, |V+| > |R| is a basic requirement
for obtaining appropriate ϕ.

C. Comparisons with [9]

The following are the important differences between the
proposed approach and the method of [9]:
i) Unlike [9] which solves only for the π/2-ambiguity, the
proposed approach solves for both the π and π/2-ambiguities.
ii) [9] solves the π/2-ambiguity by formulating it as a binary
labeling problem and uses belief propagation for propagation
of labels. Statistical priors (refer [9, Section 4.2]) which are
performance sensitive are required for this algorithm. On the
contrary, the proposed approach uses GSP framework and
overcomes the necessity of these performance sensitive priors.
iii) Since, the proposed approach solves for both the ambi-
guities, the user now can use either the iso-contour depth
tracing approach of [9] for depth estimation or other alternative
approaches of estimating the zenith θ. Subsequently, using the
pair (ϕ, θ) at every point on the surface, depth can be estimated
with many techniques available in literature.

IV. SIMULATION RESULTS

In this section, we present the simulation results on the
synthetic bunny. While we observed similar results on other
test objects, due to lack of space we provide results only on
synthetic bunny. Both the azimuth angles and zenith angles
are calculated from the ground truth shape, and using (3) five
polarized images corresponding to five different polarization

angles {0, 30, 60, 90, 120} are obtained. Now, the phase angle
φ is estimated at every point by solving (3). Fig. 3(a) and Fig.
3(b) shows the actual ground truth azimuth and the estimated
phase angle respectively. From these figures the ambiguity can
easily be noticed.

Using these estimated phase angles, the graph, as described
in Section III-B1, is constructed by assuming εd = 10 and
εg = π/6. Corresponding GFT matrix is also obtained and
Fig. 2 shows the magnitude plots of the GFT of the actual
azimuth and the estimated phase angle, with respect to the
graph frequencies λ. Notice from the figure that both have
similar lowpass like bandlimitedness, thus demonstrating the
well captured relational structure of azimuth values using
estimated phase values. Hence, using φ̃ we decide the cut-
off graph frequency. Observe from figure that after a graph
frequency of 50, the magnitude becomes negligible and hence
we fix the cut-off frequency of ω = 50 and the corresponding
|R| = 70.

Now, we choose the size of the sampling set i.e., |V+| to be
100 (around 13%) and the indexes of the sampling location set
V+ are randomly chosen. At these locations we assume that
the actual azimuth is known, and by using (8) the azimuth
corresponding to other locations are estimated. The Fig. 3(a)
shows the estimated azimuth, from which it can be observed
that it is in close agreement with the ground truth azimuth
shown in Fig. 3(b).

Next, we compare the performance of the proposed ap-
proach with that of [9] for classification of polarized specular
dominant and polarized diffuse dominant reflection regions.
For this simulation, we generated the polarized diffuse dom-
inant and polarized specular dominant regions in a checker
pattern as shown in Fig. 4(a). While the regions corresponding
to the white shows polarized specular dominant, the regions
shown in black shows polarized diffuse dominant. We choose
70 samples (around 9% of the samples) for the unambiguous
locations and Fig. 4(b) and Fig. 4(c) shows the classification
results obtained with the proposed approach and with that of
[9] respectively. From the figure, it is clearly evident that for
the same given number of samples, the proposed approach
provides better classification than that of the [9]. During the
simulations, it was observed that the performance of [9] is
sensitive to the statistical priors required for the specular
and diffuse regions. Hence, the performance of the proposed
approach was compared with that of [9] for different statistical
priors. Fig. 5 shows the misclassification percentage with
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different a priori probabilities and with increasing number
of unambiguous azimuth samples. From the figure, it can
be noticed that with increase in a priori probability, the
performance of [9] improves (which is along the expected
lines), but despite a relatively high a priori probability of
0.7, the proposed GSP based approach clearly outperforms
the label propagation approach of [9].
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Fig. 2: Figure shows the magnitude spectrum vs graph frequencies. (a) |φ̃|
vs λ, (b) |ϕ̃| vs λ. Notice the similar bandlimitedness from both the plots.
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Fig. 3: Azimuth field of the synthetic bunny. (a) shows the actual ground
truth, (b) shows the estimated phase angle field and (c) shows the estimated
azimuth with the proposed approach after ambiguity resolution.
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Fig. 4: Region corresponding to the white box and black box shows
the polarized specular dominant and polarized diffuse dominant regions
respectively on a synthetic bunny. (a) shows the ground truth, (b) shows
the classification obtained with the proposed approach and (c) shows the
classification obtained with cui.et.al [9].
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Fig. 5: Plot shows the misclassification error vs the number of unambiguous
azimuth samples of the approach of [9] for different statistical priors and the
proposed GSP framework based approach.

V. CONCLUSION

A graph, which reveals the relational structure between the
azimuth values is constructed using the estimated phase angle

values by exploiting the relationship between the azimuth
and the phase angle. Treating available azimuth values at
reliable depth points (in PMS like setup) as the sampled graph
signal, this paper presented a new approach based on GSP
for ambiguity resolution in azimuth estimation. The graph
Fourier spectrum of the estimated phase angle revealed the
important information such as the cut-off frequency and the
minimum requisite samples (in the feature-rich regions) for
unique estimation of azimuth (in feature-limited regions). The
proposed technique resolved both the pi and pi/2-ambiguities
and further performed significantly better than the existing
state-of-art approach of [9] for pi/2-ambiguity resolution. The
outputs of this technique can be further leveraged for dense
depth reconstruction of feature sparse objects in PMS by
invoking any of the standard existing procedures.
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