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Abstract—The issue of convolutive blind source separation
(BSS) is addressed in this paper. Independent low-rank matrix
analysis (ILRMA), unifying frequency-domain independent com-
ponent analysis (FDICA) and nonnegative matrix factorization
(NMF), is a method that has recently proposed to model low-
rank structure of source spectra by using NMF in addition to
independence between sources used in FDICA and independent
vector analysis (IVA). Although ILRMA has been shown to
provide better separation performance than FDICA and IVA,
the frequency components of each source are assumed to be
independent in ILRMA due to NMF modeling of source spectra,
which may degrade its performance when the short-term Fourier
transform (STFT) is unable to decorrelate the frequency com-
ponents for each source. This paper therefore presents a new
BSS method that unifies IVA and positive semidefinite tensor
factorization (PSDTF). PSDTF models not only power spectra
in the same way NMF does but also models the correlations
between frequency bins in each source. The proposed method
can be viewed as a multichannel extension of PSDTF and exploits
both the independence between sources and the inter-frequency
correlations as a clue for separating mixtures. Experimental
results indicate the improved performance of our approach.

Index Terms—Blind source separation, nonnegative matrix fac-
torization, positive semidefinite tensor factorization, independent
component analysis, independent vector analysis

I. INTRODUCTION

Multichannel blind source separation (BSS) is a task de-
signed to recover the original source signals from an observed
mixture without having any knowledge of mixing systems or
microphone positions. Frequency-domain independent compo-
nent analysis (FDICA [1]-[3]) and independent vector analysis
(IVA [4]-[6]) are common BSS approaches for convolutive
mixtures, where the number of sources is no greater than that
of microphones. Both approaches address BSS in the time-
frequency (TF) domain using the short-term Fourier transform
(STFT) and rely mainly on statistical independence between
source signals as a clue for separating mixtures.

FDICA and independent vector analysis (IVA) have been
extended in recent years to take advantage of specific TF
structures of source spectra to be separated, in addition to the
independence between source signals. The technique in which
low-rank approximation of source spectra by nonnegative
matrix factorization (NMF [7]-[9]) is applied is one such ex-
tension that has been very successful. This approach is called
independent low-rank matrix analysis (ILRMA [10]-[13])
and was reported to outperform the separation performance
of FDICA and IVA. Besides that, Gaussian ILRMA [11],
unifying FDICA and Itakura-Saito NMF (IS-NMF [8]), is
interesting from another perspective. This is, it can be regarded
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as the method that transforms the multichannel extension of
IS-NMF (MNMF [14]-[16]) into an optimization problem of
the separation filters in a demixing system [11]. From an
optimization point of view, ILRMA converges much faster
and is more stable than MNMF since it has fewer model
parameters than MNMEF. It can also utilize the fast and stable
algorithm for the auxiliary-function-based IVA [17], called an
iterative projection (IP [10]-[12], [17]) method, to optimize
the separation filters.

While ILRMA has the above-mentioned advantages, note
that frequency components are assumed to be independent
in ILRMA as well as MNMF due to its NMF modeling of
source spectra. If STFT perfectly decorrelates the frequency
components for each source (and also, if each TF component
is Gaussian distributed), then the model of Gaussian ILRMA is
theoretically justified. Many signals such as speech, however,
have high non-stationarity and cannot be decorrelated by
STFT, resulting in degraded performance of ILRMA.

The same problem has been discussed in the single-channel
BSS scenario, and consequently, positive semidefinite tensor
factorization (PSDTF [18]-[20]) has been developed as an
extension of NMF. In PSDTF based on log-determinant diver-
gence (LD-PSDTF [18]), each frame of the source spectra is
assumed to have a multivariate complex Gaussian distribution,
and its covariance matrix is represented by a conic sum of
Hermitian positive semidefinite basis matrices. (Note that IS-
NMF can be achieved as the LD-PSDTF without non-diagonal
bases.) This modeling enables PSDTF to take inter-frequency
correlations in each source spectrum into account and to
achieve better separation performance than NMF [19].

We thus propose in this paper a new BSS method that unifies
IVA and PSDTF to improve the separation performance of
Gaussian ILRMA. We call this method independent positive
semidefinite tensor analysis (IPSDTA) (see Section II). By
modeling source spectra with PSDTF, the proposed method
can rely not only on the independence between source signals
but also on the inter-frequency correlations in each source as a
clue for separating mixtures, unlike previous methods includ-
ing ILRMA and MNMF. We also develop a new optimization
algorithm of the separation filters for IPSDTA by extending
the original IP method (see Subsection III-A), and we reveal
the relationship between them (see Section IV). Furthermore,
we propose an approximation approach for IPSDTA to speed
up the optimization of the model because IPSDTA is a
multichannel extension of PSDTF and inevitably suffers from
heavy computational cost (see Section V). The effectiveness
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of the proposed approach is confirmed experimentally.

II. PROPOSED GENERATIVE MODEL
A. Blind source separation in the time-frequency domain

Assume that N sources are observed by N microphones.
The source signals and the observations in each time-frequency

slot (f,t) € [F] x [T] are denoted as
spe=[s1p15--rsnp4] €CY (D
Tfr = [I1,f7t,...,$N7f7t]T E(CN (2)

respectively, where f € [F] := {1,...,F} and t € [T] =

{1,..., T} indicate the frequency bin and time frame indices.
Also, (-)" denotes the matrix transpose. In this paper, the
linear mixing system

Ty = Afo’,g7 Sft = W;L:Ef’t, W;L = A;l 3)

is considered. Here, ()h means the Hermitian transpose, and

Jay.s] € CVXN (4)
wy,s] € CV*N (5)

Af = [a17f,...
Wf = [wl,f,...7

denote the mixing and demixing matrices whose columns are
composed of the steering vectors a,, s € C" and the separa-
tion filters w,, s € C" for each source n € [N] := {1,..., N}
and frequency f € [F], respectively.

In what follows, for the sake of simplicity, the following
notations are used:

Ty [517]—15» S a’;,t]—r eCNr (6)

Sn,t = [Sn,l,ta .o 75717F,t]T € (CF (N

a, ‘= [a;br,la a;F]T S (CNF (®)

w,, = [w;p ..,wlF]TéCNF &)

We=|. | eCNTNT 0
O 0] Wg

where W denotes the block diagonal matrix whose diagonal
blocks are demixing matrices {Wf}?:l C CNxN,
B. Independence assumption of source signals

By using the relation (3), the likelihood of the observed
signals {x}; is represented as

p{mi}e) = p({snitns) - ] | det W[,

fit

(1)

In this paper, in the same way as in the conventional IVA [4]-
[6], the decomposition of
Hp Sn t

{Sn f}n t
is assumed. This implies that the source signals are inde-
pendent of each other, and each signal is also independent
in the time direction. Note that FDICA and ILRMA further

12)
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assume the independence along the frequency direction for

each source, i.e.,
p({sn,t}n,t) = H p(sn,f,t)7
n,f,t

13)
which is not necessarily suited for real-world signals such as

speech signals having strong correlations between neighboring
frequency bins [21], [22].

C. Source spectrum model based on positive semidefinite
tensor factorization

The source generative model of the Gaussian ILRMA [11]
is characterized by the spatial model (3) and (11), the inde-
pendence assumption (13), and the following source spectrum
model (i) and (ii):

1) Each time-frequency component s,, 7, € C of source

n € [N] obeys the complex Gaussian distribution
having zero mean and the variance v, r; € Rsg.

(ii)  For each source n € [N], the variances {vy, f+} ¢ ¢,

which encode the information of source spectra, are
low-rank approximated by NMF.

The source spectrum model of ILRMA is based on NMF, and
it thus inevitably ignores the correlations between frequency
bins. We therefore employ PSDTF, which was first proposed
as a monaural source separation method to overcome the
independence assumption in NMF, to model source spectra
in multi-channel source separation tasks. PSDTF is a factor-
ization method that includes NMF as a special case, and was
reported to outperform the separation performance of NMF in
monaural source separation tasks [19].

The generative model in the proposed independent positive
semidefinite tensor analysis (IPSDTA) is characterized by the
spatial model (3) and (11), the independence assumption (12),
and the following source spectrum model (i’) and (ii’):

(i’)  Each time frame component s, ; € CF of source
n € [N] obeys the multivariate complex Gaussian
distribution having zero mean and the covariance
matrix R, ; € CFxF,

For each source n € [N], the covariance matri-
ces {R,}+, which encode the information of the
source spectrum as well as the correlation between
frequency components, are modeled by PSDTF:

KT?,
Rn,t = § Un,kvn,k,t~
k=1

Here, for each source n € [N], K,, is the number
of bases in PSDTF, and U, € CF*F is a time-
invariant Hermitian positive semidefinite matrix of
the k-th basis, and v, 1+ € Rs¢ is a time-variant
activation for the k-th basis and ¢-th frame.

(i)

(14)

Note that in the proposed generative model defined by (3),
(11), (12), (i’), and (ii’), the set of model parameters O is
given by

_{Wf7 n,k» Unkta}nftk (15)
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The optimization of the parameters is based on the max-
imization of the log-likelihood, which is equivalent to the
minimization of the cost function J(O) defined by

1
J(©) = T Z logp(sp,:) — 2 Z log | det W|
n,t f

1
= 5> {8 R isns +logdet Ry}
n,t
,2210g|deth|+07 (16)
f

where C' is a constant independent of O.

III. OPTIMIZATION ALGORITHM OF THE MODEL

In this section, an algorithm derived to minimize the cost
function (16) is presented. It is based on a block coordinate
descent method that alternately updates the separation filters
{W¢}s and the PSDTF parameters {Up, i, Un k¢ tn k¢ After
the convergence of the algorithm, the amplitude ambiguities
of separated signals are restored by using the projection back
technique [23], [24] as follows:

Snofaln,f = (W sy ) (Wi e, €CN, 0 (17)
where e,, € RY denotes the unit vector with the n-th element
equal to one and the others equal to zero.

A. Optimization of separation filters

The natural gradient method [25] has conventionally been
used to optimize the separation filters in FDICA and IVA.
In recent years, however, the iterative projection (IP) method,
proposed for auxiliary-function based IVA [17] and used in
ILRMA [10]-[13] has been attracting a lot of attention because
it is more stable and rather faster to converge. We therefore
extend the IP method to optimize the separation filters in
IPSDTA. The proposed IP method is identical to the block
coordinate descent that iteratively optimizes the separation
filter w,, for each source n € [N].

The stationary points of the cost function (16) with respect
to w,, satisfy

Whann =Ggn = [CI | | er—HT € (CNF

1 -
G, = = Xt:(mtm?) O (Jy @ (Rpt) ') € CNFXNE 1 (19)

(18)

where g, € RNF is a vector obtained by arranging F' e,,’s in
the vertical direction, ® denotes a Hadamard product, Jy €
RN*N g the matrix whose elements are all equal to 1, R is
defined as (R")T for matrix R, and ® is a Kronecker product
and calculated by A ® [b;;];; = [Abij]i;. Note that G, is
positive semidefinite in equation (19), since both x;x]* and
JN ® (R, )~ ! are positive semidefinite and the Hadamard
product of two positive semidefinite matrix is also positive
semidefinite.
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The solution w,, of (18) with respect to w,, is written by

w, = (W"G,) 'Angn = G, ' Aya, € CNF (20)
Al O - o
O Mpoly - 0O
O O AN
= Iy ®@diag {A\n1,..., Ay p} € CVFXNE a1

where [ is an identity matrix of size N x N and {/\",f}?:l C
C are complex values satisfying (22) below:

F
L= Y Magbugrg (22)
f=1
bngrs = an (G ") pr g, - (23)

In (23), (G,,;") s,y € CN*N means the (f, f')-th block in the
block matrix G, € CNF*NE having F? matrices of size
N x N. As an alternative way to solve (22) rigorously, we
propose a fixed point iteration to optimize {\,, f}?zl, whose
update rules are represented by

An =10 (B X, (24)

where A, == [An1,.. ., Anp]l €CF 1 :=1,...,1]T € RF,
© is a coordinate-wise quotient of two vectors and B, €
CF*F is a matrix whose (i, j)-th element is equal to by, ; ;.

B. Optimization of PSDTF parameters

As for the optimization of PSDTF parameters, observe that
the cost function (16) is separable for each source n € [N].
(We consider {W;}, as constants in this stage.) Then, we
can immediately apply the EM-algorithm for PSDTF proposed
in [20]. The update rules are expressed as follows:

1 _
vnii = 7t (Urh@uee) 25)
T
1 (I)n k.t
Upnr == — 26
ok T Z Un.k,t ( )
t=1 "%
where
Dkt = Sn8 s + R 27)
én,k,t = RTL,kJ,t(RTL,t)7187L,t (28)
Ryt = Rukt— Rogt (Rut) " Rug (29)
Kn Kn
Rot = Rukt = UnitUni- (30)
k=1 k=1

C. Summary of the proposed algorithm

The procedure of the proposed algorithm is as follows:
1) Initialize the parameters © and {\, ¢}. ¢
2) Iterate the following steps until convergence.
a) Calculate {s,, ¢}, and {a,}, by (3).
b) Iteratively update {vy, ¢ g, Un i }n.t.6 BY (25)—(30).
¢) Calculate {G,,},, by (14) and (19).
d) Iteratively update {\, f}, by (23)-(24).
e) Iteratively update {w, f}, r by (20)-(21).
3) Calculate the separated signals by (3) and (17).
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IV. RELATION TO PRIOR WORK

Let us confirm that the proposed IPSDTA is identical to the
conventional Gaussian ILRMA [11] when the basis matrices
{Un.k}nx of PSDTF are limited to diagonal matrices.

If all the basis matrices are diagonals, then {R,, ¢}, are
also diagonals, and hence the factonzanon of (14) is simply
the NMF decomposition: (R, ¢)f,f = Zk " (Unk) f.F * Unke ts
where (R, :)s,¢ and (U, x)ys s are the (f, f)-th elements of
R, ; and U, 1, respectively. Then, the cost function (16) turns
out to be identical to that of the Gaussian ILRMA [11]. In this
sense, the proposed IPSDTA can be considered as an extension
of the Gaussian ILRMA.

Next, we check that the proposed optimization algorithm of
the separation filters derived in Subsection III-A is the same
as the original IP method for IVA [17] and ILRMA [11] if all
the { Ry, ¢ } .+ are diagonals. If { R,, ; },, ; are diagonals, the G,,
in (19) can be simplified to the block diagonal matrix whose
diagonal blocks are expressed as

Gy = L BT oy e G
T S (Ru)gs ’ '
Then, the equations (20) and (22) are also decomposed into
W, = Ao s (Wi Ghp)~ten (32)
1
Mnsl? = (33)
h G fan f

for each f € [F], which are 1dentlcal to the correspondences
in the original IP method [11], [17].

V. APPROXIMATION FOR COMPUTATIONAL COST
REDUCTION

As an adverse effect of increasing the model flexibility by
using PSDTF, IPSDTA suffers from heavy computational cost
in each iteration (Step 2 in Subsection III-C). In particular, the
following computations are cumbersome:

« Computation of {G,,}, in (19): O(N3F2T)

« Computation of {w, }, in (20): O(N*F?)

o Computation of {R,, j t }nk+ in (29): O(KF3T),
where we define K = 25:1 K,,. We therefore propose an
approximation of the PSDTF modeling in the following two
steps: 1) First, we divide the set of all frequency bins [F] into
a family of sets of frequency bins F as follows [26]:

F C 2lF1 gt Uper E = [F], (34)

where L denotes the disjoint union of sets; and 2) we impose
the independence assumption, instead of (12), as follows:

p({sn,t}n,t) H H P({sn,s1}rer),

n,t E€F

(35)

which is equivalent to the block decomposition of the bases
{Un.k }n.i in PSDTF by using F. This approximation dramat-
ically reduces the computational load, resulting in

o Computation of {Gp,}, in (19): O(Y e N*E?T)

o Computation of {w,}, in (20): O3z N*E?)

o Computation of { Ry, k.t }n k¢ in (29): O per KE®T).
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TABLE I
EXPERIMENTAL CONDITIONS

16 kHz

4096 points (256 ms)
1024 points (64 ms)

Hanning

10 s
(female, female) or (male, male)
130 ms/250 ms
5 cm/l m

Sampling rate
Frame length
Frame shift
Window function
Signal length
Mixture signal (N = 2)
Reverberation time (RTgp)
Microphone spacing

VI. EXPERIMENT
A. Conditions

The performance of the proposed method was evaluated in
an experiment we carried out using live recorded speech data
in the devl dataset provided by SiISEC2008 [27]. We obtained
16 determined stereo (/N = 2) mixtures in total by adding
clean spatial images in the dataset. We tested three methods in
the experiment: Gaussian ILRMA [11] and the two proposed

IPSDTA with Fj, = {E; C [F] | i = 1,...,k} for k €
{512,1024} in (34), where we define

F F
fort=1,... k.

The number of iterations in the optimization, corresponding
to Step 2 in Subsection III-C, was set to 400 for all methods,
and each iterative update (Step 2 (b)(d)(e) in Subsection III-C)
was performed once in each iteration. The number of bases
in NMF and PSDTF was set to K,, € {2,4,6,8,10} for
each source n € [N]. The separation filters {WW;}s were
initialized by the identity matrix, while each parameter of
NMF and PSDTF was randomly initialized from the uniform
distribution over (0, 1), except that the bases of PSDTF were
chosen to be diagonal matrices in the initialization. We also
initialized A, = 1 for all n € [N] in (24). The performance
was evaluated by averaging the signal-to-distortion ratio (SDR)
improvements [28] for all mixtures and trials. The other
experimental conditions are listed in Table I.

B. Results

Figure 1 shows the average SDR improvements for the
recording conditions in Table I. The average was taken over
10 samples, namely, 2 mixtures and 5 trials with the random
initialization. Although the proposed IPSDTA gives somewhat
low scores in (c) and (g), it generally outperforms or gives
comparable results to ILRMA, implying the validity of the
proposed approach. The reason IPSDTA performance degrades
in (c) and (g) may be because the optimizations were trapped
in bad local optima since IPSDTA has a larger number of
parameters than ILRMA. When ILRMA is used to separate
speech mixtures, the number of NMF bases should be set
at 2 because NMF has difficulty capturing complex speech
spectrograms [11]. For IPSDTA, however, it is considered
from (a), (e) and (g) that the number of bases should not be too
few. This suggests that PSDTF in IPSDTA can capture inter-
frequency correlations of source spectra and can potentially
further improve the separation performance of ILRMA.
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= (LRMA
= IPSDTA W/ Fioza |
== (PSDTA W/ Fs1

SDR improvement [dB]
SDR improvement [dB]

2 4 6 10 2 4 6 8 10
# of bases # of bases
(a) female, 130 ms, 1 m (b) male, 130 ms, 1 m
3 g
B o
Q 1=
5 £
3 g
g g
g g
o o
2 2
2 4 6 8 10 2 4 6 8 10
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(c) female, 130 ms, 5 cm (d) male, 130 ms, 5 cm
] 12+
g% ]
= =10
£° g
£ g8
g5 g
2 g6
=) 2
g1 s
g2 2
2] 12} 2
0 0
2 4 6 8 10 2 4 6 8 10
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(e) female, 250 ms, 1 m (f) male, 250 ms, 1 m

| | 1 | [ | 1

©

o

N

SDR improvement [dB]
N

SDR improvement [dB]

o

2 4

8 10 2 4 6 8 10

6
# of bases # of bases

(g) female, 250 ms, 5 cm (h) male, 250 ms, 5 cm

Fig. 1. Average SDR improvements and their standard deviations for
Gaussian ILRMA and the proposed IPSDTA with F512 or Fio24,
for the recording conditions in Table I: (mixture signal, reverberation
time, microphone spacing). The horizontal axis denotes the number
of bases K, for each source in NMF and PSDTF. The legend is the
same for all graphs.

VII. CONCLUSION

This paper presented a new BSS approach that estimates
a source spatial model by IVA and a source spectrum model
by PSDTF, which enables us to exploit both the independence
between sources and the inter-frequency correlations in each
source spectrum as a clue for separating mixtures. The exper-
imental results show the validity of the proposed approach.
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