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Abstract—Though high resolution time-frequency 
representations (TFRs) are developed and provide satisfactory 
results for multicomponent nonstationary signals, extracting 
multiple ridges from the time-frequency (TF) plot to 
approximate the instantaneous frequencies (IFs) for intersected 
components is quite difficult. In this work, the sparse time-
frequency-frequency-rate representation (STFFRR) is proposed 
by using the short-time sparse representation (STSR) with the 
chirp dictionary. The instantaneous frequency rate (IFRs) and 
IFs of signal components can be jointly estimated via the 
STFFRR. As there are permutations between the IF and IFR 
estimates of signal components at different instants, the local k-
means clustering algorithm is applied for component linking. By 
employing the STFFRR, the intersected components in TF plot 
can be well separated and robust IF estimation can be obtained. 
Numerical results validate the effectiveness of the proposed 
method. 

 

Keywords—multicomponent nonstationary signal, time-
frequency-frequency-rate representation; short-time sparse 
representation; instantaneous frequency estimation; local k-
means clustering algorithm 

I. INTRODUCTION 

Nonstationary signal analysis has received extensive 
attention in the fields of speech processing, biomedical 
applications, radar, telecommunications, etc [1-2]. For 
example, the echo-location pulse emitted by the brown bat is 
a typical multicomponent nonstationary signal, which 
contains multiple chirps [3]. Generally, the instantaneous 
frequency (IF) or instantaneous frequency rate (IFR) of the 
signal is used for nonstationary signal characterization. 

Time-frequency representations (TFRs) which can jointly 
provide time and frequency information are widely employed 
for IF estimation [1-2]. The short-time Fourier transform 
(STFT) is developed by performing Fourier transform on the 
local patches of the signal. The STFT is proved to be useful, 
but its resolution is limited by the window length. The 
Wigner-Ville distribution (WVD) possesses optimal TF 
resolution for a chirp signal. However, the application of 
WVD is restricted as it suffers from the auto-term inference 
for nonlinear frequency modulated signals and the cross-term 
inference for multicomponent signals. Later, the 
modifications of WVD, e.g., the polynomial Wigner-Ville 
distribution and the L-Wigner distribution, are developed to 
reduce the unwanted inferences and to get a high TF 

resolution [1-2]. The chirp-based TFR which represents the 
TFR by the sum of Gaussian chirplet components is free of 
inferences as well [3-5]. 

In addition to TFRs, time-frequency rate representations 
(TFRRs) are proposed for instantaneous frequency rate (IFR) 
estimation. In [6], the cubic phase function (CPF) is proposed 
and it is proved that the energy of the CPF is concentrated 
along the FR law of the signal for polynomial phase signals 
(PPSs) with terms less than third order. Similar to the WVD, 
as a bilinear transform, the CPF suffers from the cross term as 
well. To suppress the cross term, the smoothed high-
resolution time-frequency rate representation (SHR-TFRR) is 
proposed by introducing an FR window [7]. 

Neither the TFR nor the TFRR can provide joint IF and 
IFR estimation simultaneously. Take the TFRR for example, 
the IF of a signal is re-calculated by the integral of the IFR 
estimate [8]. To the best of our knowledge, the cross quadratic 
spectrum (XQS) is the sole time-frequency-frequency rate 
representation (TFFRR) which provides accurate 
characterization for both IF and IFR [9]. The XQS is 
constructed by performing the quadratic Fourier transform 
(QFT) on the forward and backward segments followed by 
averaging over the products of the forward and backward 
QFTs. 

After obtaining the representation of a signal in the TF or 
the TFR plot, IF or IFR estimation can be achieved by 
extracting the ridges. For the monocomponent signal, either 
the component with the maximum energy or the first 
conditional moment at each time instant is capable of 
providing IF estimates [1]. When it comes to the 
multicomponent signal, the Viterbi algorithm [8, 10] with 
defined path penalty function is proposed to obtain high 
accurate IF and IFR estimates in a high noise environment. 
However, this method fails when there are intersections 
between different signal components. 

In this work, the sparse time-frequency-frequency rate 
representation (STFFRR) is proposed for multicomponent 
nonstationary analysis. The STFFRR is constructed through 
the short-time sparse representation (STSR) with the chirp 
dictionary, which is more accurate than the STFT and can 
simultaneously provide IF and IFR characterization. 
Furthermore, the employment of sparse representation (SR) 
allows direct joint IF and IFR estimation instead of 
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performing ridge extracting approaches, which is the main 
difference from the existing dense representations (e.g., XQS).  

The signal components appear as separated and non-
intersected curves in the TFFR plot and there are 
permutations between their IF and IFR estimates at different 
instants. The local k-means clustering algorithm is then 
applied for component linking and the permutations between 
components are resolved. 

The rest of this paper is organized as follows. In section II, 
the signal model and the proposed method is proposed. A 
multicomponent nonstationary signal is employed to evaluate 
the performance of the proposed method in section III. 
Conclusions are provided in Section IV. 

II. THE SPARSE TIME-FREQUENCY-FREQUENCY-RATE 

REPRESENTATION 

A. The Multicomponent Nonstationary Signal 

The following expression gives an analytic 
multicomponent nonstationary signal, 

       
1

exp
L

i ii
x t a t j t


   (1) 

where       expi i ix t a t j t is the ith component,  ia t  

and  i t  are the instantaneous amplitude (IA) and 

instantaneous phase (IP) of  ix t , respectively. The 

instantaneous frequency (IF) of  ix t  is defined by the first 

derivative of the IP, 

  
 1

2

i

i

d t
f t

dt




   (2) 

And the instantaneous frequency rate (IFR) is defined by the 
second derivative of the IP, 

  
 2

2

1
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i

i

d t
t

dt




    (3) 

The purpose of multicomponent nonstationary signal 
analysis is to obtain a representation (TFR or TFRR) in which 
the energy is concentrated along the IFs or IFRs of each 
components. Then further processing can be carried out based 
on the representation or the IF and IFR estimates. 

In this work, we only consider multicomponent 
nonstationary signals with continuous IFs and IFRs, i.e., 

   1 0,if t C T ,    0,i t C T  , where T is the signal 

duration. For ,i j           =i i j jf t t f t t ， ，  

requires that these two components to be tangent in the TF 
plot (which is a more strict condition compared with the 
intersection in the TF plot). Thus the probability of 
intersection in TFFR plot decreases and components appear as 
non-intersected curves in the TFFR space for most of the time. 

B. The TFFRR of Three Typical Signals 

In this Subsection, the IFs and IFRs of the sinusoidal signal 
(SS), the chirp signal (CS), and the sinusoidal frequency 
modulated signal (SFMS) are derived, respectively. Further 

insight of the characteristics of the TFFRR can be obtained 
from these three signals. 

The SS signal is given as 

    exp 2a a ax t A j f t   (4) 

The IF and IFR of  ax t  can be expressed as 

  a af t f   (5) 

   0a t    (6) 

Thus, the TFFRR of  ax t  is 

  , ,0a ac t f   (7) 

ac  is a line perpendicular to the frequency axis in the TF 

plane. 
The CS signal is given as 

     2exp 2 0.5b b b bx t A j f t t     (8) 

The IF, IFR, TFFRR of  bx t  can be expressed as 

  b b bf t f t    (9) 

  b bt     (10) 

  , ,b b b bc t f t     (11) 

bc  is a line as well. 

Proposition 1: The sinusoidal signal and the chirp signal 
cannot be intersected in the TFFR plot. 

Proof: Assume that ac  and bc  are intersected at point

   , ,0 = , ,a b b bt f t f t  , this equation collapses into 

   , ,0b b af f  . Thus ac  and bc would be the same line, 

which is contrary to the definition of ac  and bc , and 

Proposition 1 is proved. 
Proposition 2: Two chirp signals cannot be intersected 

in the TFFR plot. 

Proof: Assume that bc  and bc  are intersected at point 

   , , = , ,b b b b b bt f t t f t       , this equation collapses into 

   , ,b b b bf f   . Thus bc  and bc  would be the same line, 

which is contrary to the definition of bc  and bc , and 

Proposition 2 is proved. 
The SFMS signal is given as 

      .1 .2 .1 .2exp 2 sin 2 exp 2c c c c c cx t A j A f t j f t      (12) 

     .2 .1 .2 .12 cos 2c c c c c cf t f f A f t       (13) 

       2

.1 .2 .12 sin 2c c c c ct f A f t        (14) 

Thus, the IF and IFR of the SFMS signal are both a sinusoidal 
function with respect to time and their relation can be 
expressed by 

 
  

 

  

  

2 2

.2

2 22
.1 .2 .1 .2

1
2 2

c c c

c c c c

f t f t

f A f A 

 
    (15) 

It can be known from (15) that     , ,c c cc t f t t   is a helix 

curve. 
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C. The Short-Time Sparse Representation 

Before giving the detail of the STSR, we briefly review the 

definition of the STFT. The STFT of  x t  is 

        , exp 2x t f x t h t j f d    




     (16) 

where  h t  is a symmetric window function centered at 0t  . 

The performance of the STFT is limited if the frequency 
content of a signal varies fast in a short time.  

To get a more accurate model for a nonstationary signal, it 
is preferred to perform quadratic Fourier transform on the 
signal patch [9, 11]. In this work, the STSR is employed and 
the local patch of the signal is approximated by multiple 
chirps. Thus, the STSR can be used for multicomponent 
signals and allows direct joint IF and IFR estimation. 

Denote the local patch of  x t  at instant t as 

      ; ;
2 2
w w

x

l l
p t x t h t t t         (17) 

where wl  is the window length. 

The chirp signal is defined as 

    2exp 2 ;
2 2
w w

k k k

l l
s j f j            (18) 

where kf , k are the central frequency and chirp rate, 

respectively. 

 ;xp t  can be represented by chirps as follows 

      
1

; =
Q

x k k
k

p t a s e  


   (19) 

where ka  is the complex amplitude of  ks  ;  e   is the 

error term.  
Equation (19) is the classical SR problem and can be solved 

by the orthogonal matching pursuit (OMP), the basis pursuit 
(BP), etc. The special property of chirps can be utilized to 
accelerate the computation and we refer to the approximate 
maximum likelihood estimation (MLE) method in [5] which 
is indeed a modification of the OMP. The parameters required 

to be calculated are   
1

, ,
Q

k k k k
a f 


 (These parameters has 

little difference with that of [5] and there are some 
modifications in the following introduced procedure.).  

The modified OMP algorithm is detailed as follows. 

1) Set 1k  , denote the residual signal as    ;k xr p t   

2) Estimate ˆ ˆˆ , ,k k ka f   via the approximate MLE method 

Estimate the chirp rate by 

  
4ˆ =arg maxk S f df


    (20) 

where  S  is the Fourier transform of the chirp rotated 

signal 

        2= exp exp 2kS f r j j f d         (21) 

Then frequency estimate of this chirp is given 

  ˆ
ˆ arg max

k
k

f
f S f


   (22) 

And the complex amplitude can be obtained by computing the 
normalized inner product 

 
   

   

ˆ,
ˆ

ˆ ˆ,

k k

k

k k

r s
a

s s

 

 
   (23) 

where    2ˆ ˆˆ = exp 2k k ks j f j     . 

3) Update the residual signal 

      1
ˆ ˆ

k k k kr r a s       (24) 

4) Set 1k k  , repeat step 2), 3) until k  equals a 

predetermined number Q  or the energy of residual signal is 

small then a threshold  .  

By performing the modified OMP algorithm on each signal 

patch  ;xp t , we get the STSR of  x t  as 

    1 0

= , ,
TQ

t t t
k k k

k t

a f 
 

   (25) 

where Q  is the component number, T ( N  for the discrete 

version) is the time duration of  x t . The component number 

can be obtained by a prior information or estimated by using 
short-term time-frequency renyi entropy [12]. 

D. Component Linking by Local K-means Clustering 

From the aforementioned discussions, it is clear that the 
probability of intersection for the curves corresponding to 
different components are much lower in the TFFR plot 
compared with that in the TF plot. This property makes the 
linking of components much easier. One can simply assign a 
point at an instant in TFFR plot to the same component index 
of its nearest point at a previous instant. A more robust 
approach would be to use more points at several previous 
instants to make the decision. In this paper, the local k-means 
clustering algorithm, i.e., perform k-means clustering on the 
sliding window of the STSR results, is employed to achieve 
this. 

The linking of components by local k-means clustering is 
detailed as follows. 

Input: STSR results    1 1

= , ,
NQ

n n n
k k k

k n

a f 
 

 , clustering 

window length sl . 

Output:    1 1

, , ,
NQ

n n n n
k k k k

k n

a f y
 

   , where n
ky  is the 

cluster label. 
Initialize: 1m  , initial cluster centroids are 

      1 1 1 1 1 1
1 1 2 2, , , , ..., ,m Q QC f f f   ,    .  

1) Gather the IF estimates and IFR estimates from instant m 

to instant 1sm l  , denote the set as 

  
1

=
= , , ,

sm Q l

m k k k k k m
a f n

  
 . 

2) Perform k-means clustering on m  with the initial 

cluster centroids mC , the clustering result are 
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 
1sm Q l

m k k m
Y y

  


  where ky  is the cluster label of data point 

 ,k kf  , and the new cluster centroids ˆ
mC . 

The distance metric adopted herein is the Euclidean 
distance of IF and IFR, which is defined as 

    
2 2

ij i j i jd f f        (26) 

3) Store the clustering result in  with the form of 

 , , ,n n n n
k k k ka f y , update the initial cluster centroid + sm lC 

ˆ
mC . 

4) Set sm m l   , repeat step 1) to step 3) until =m N . 

III. EXAMPLES 

A multicomponent signal is utilized to validate the 
proposed approach. 

      
3

1
i

i

x t x t e t


    (27) 

where  1x t  is a SS signal;  2x t  is a CS signal;  3x t is a 

SFMS signal;  e t  is zero mean, white Gaussian stationary 

noise with variance 2
e . 

     1 exp 2 120x t j t     (28) 

       2
2 =cos 2 0.05 exp 2 200 0.5 300x t t j t t       (29) 

 
 

    

3 =sin 2 0.1
2

exp 2 10sin 2 exp 2 80

x t t

j t j t




   

 
  

 

   

  (30) 

The duration of  x t  is 1sT  ; the sampling frequency is 

500 Hzsf  . The discrete version of (27) is denoted as  x n , 

where 0,1, , 1n N  , and N is the signal length. The signal 

to noise ratio (SNR) is defined by 

 
 

21

0

2
SNR 10log10

N

n

e

x n

N






  (31) 

A 10 dB  noise contaminated signal is first used for 

performance evaluation and the results are plotted in Fig.1-3. 
Fig.1 shows the STFT of the signal with an 85-length 
hamming window. The energy of the SS signal is more 
concentrated along the IF than the two other components and 
appears to be the strongest though these three components 
have similar IAs. This indicates that the STFT is not accurate 
enough for dealing with non-sinusoidal signals. 

Fig. 2 shows the result of the STSR and its projections on 
the TF and the TFR plane; the amplitudes of the components 
are encoded in the color. In this example, the signal 
components appear as non-intersected curves, i.e., two lines 
and a helix curve, in the TFFR plot. IF and IFR can be 
directly obtained from the STFFRR. As it can be seen from 
the two upper subfigures, the disturbance of the IFR estimates 
are more obvious compared with the IF estimates. This means 
that the IFR estimates are less accurate. Furthermore, the IAs 
of the three component are similar. The experiment results 

show that the STSR is suitable for processing multicomponent 
nonstationary signals. 

  
Fig. 1. STFT of the signal. 

 
Fig. 2. STSR results. Upper left plot: TF representation; Upper right plot: 
TFR representation; lower plot: TFFR representation. 

 
(a) STSR-k-means 

 
(b) STFT-Viterbi 

Fig. 3. IF estimates. The dashed lines represent the true IF and the solid lines 
represents the IF estimates. 
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Fig. 3 shows the IF estimates by performing local k-means 
clustering algorithm on the STSR and the Viterbi algorithm 
on the STFT [10]. It is evident that the proposed STSR-k-
means algorithm can exactly extract each individual 
components with negligible IF derivations. While the STFT-
Viterbi algorithm fails to recognize the intersected CS signal 
and SFMS. The IF estimates of these two components are 
swapped at 0.3s and 0.6s and with larger derivations. It should 
be pointed out that the Viterbi algorithm has the potential to 
track intersected IF components providing that the IFRs are 
utilized. However, the Viterbi algorithm is a global searching 
algorithm which is dependent on the defined parameterized 
path penalty function whose parameters are difficult to choose 
and optimize. Thus the STSR-Viterbi algorithm is not 
performed here. 

This result shows that the STSR-k-means algorithm can 
process the multicomponent nonstationary signal with a high 
performance, while the STFT-Viterbi fails to achieve this. 
The permutations between intersected components in the TF 
plot are resolved by using IFR as the additional information 
and the local k-means algorithm for component linking. 

To further demonstrate the performance of STSR, Monte 
Carlo simulation is carried out for SNR varying from -5 dB to 
15 dB. 100 simulations is performed for each SNR. Fig. 4 
shows the mean square errors (MSEs) of the IF estimates of 
the aforementioned three signals; a comparison with the STFT 
is made. The MSE of the IF estimates is given by 

    
1 1 2

0 0

1 ˆ
M N

m

m n

MSE f n f n
NM

 

 

    (32) 

where  f n  are the true IFs of the signal and  ˆ mf n  are the 

IF estimates, n is the discrete time, the superscript m 

represents the mth simulation. 
Except for the SS signal, the MSEs of IF estimates of the 

STSR are much lower than that of the STFT for all noise 
levels. The average improvements for the CS signal and the 
SFMS signal are 3.3 and 1.3 in log 10 scale, respectively. 

 

Fig. 4. MSE of IF estimates versus SNR 

IV. CONCLUSIONS 

In this work, the STFFRR is proposed by using the STSR 
with the chirp dictionary. By employing the chirp dictionary, 
the STFFRR can well modeled nonstationary signals with a 

high accuracy. Compared with the existing representations, 
the STFFRR has two distinct properties. Firstly, as a SR-
based representation, the STFFRR can provide direct joint IF 
and IFR estimation. Secondly, the signal components can only 
be intersected in the TFFR plot when they are tangent in the 
TF plot. Thus, the probability of intersection decreases and 
the signal components appear as separated and non-
intersected curves for most of the time. By performing local 
k-means clustering algorithm on the IF and IFR estimates, the 
permutations between intersected components in the TF plot 
are solved. Results show that robust component separation 
and IF estimation are obtained. 

The TFFRR of three typical signals, i.e., the SS signal, the 
CS signal and the SFMS signal are derived as well. The SS 
signal and the CS signal appear as lines in the TFFR plot, and 
the SFMS signal appears as a helix line. It is shown that the 
SS signal and the CS signal, and two CS signals can never be 
intersected in TFFFR. The special properties of TFFRR, i.e., 
the curve shapes of different types of signals can be used to 
develop more sophisticated nonstationary signal processing 
methods. Further research on how to achieve this will be 
carried out. 
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