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Abstract—Recently there has been a growing interest in the
application of polynomial matrix decomposition methods to
the problem of efficient decoding of multiple-input multiple-
output (MIMO) communication channels. Essentially, this type of
approach decouples the frequency selective MIMO channel into a
number of independent, frequency selective, single-input single-
output (SISO) sub-channels by way of a polynomial singular-
value decomposition (PSVD) or polynomial QR decomposition
(PQRD) with successive interference cancellation. In this paper,
we investigate a new PQRD algorithm, namely SM-PQRD, which
is based on the concept of recently developed sequential matrix
diagonalization (SMD). We also propose a new variant of SM-
PQRD, namely MESM-PQRD to minimize computational com-
plexity. Simulation results show that the new PQRD converges
faster than state of the art algorithms. The applicability of the
proposed algorithm is demonstrated for a frequency selective
MIMO channel equalization problem.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) is a key technol-
ogy for recent generation networks by utilizing an array of
multiple antennas at both ends [1]. MIMO communications has
gained increasing attention over the last decade. Compared to
traditional single-input single-output (SISO) systems, MIMO
technology offers improvement in the transmission reliabili-
ties, and provide higher channel capacity to wireless commu-
nications without requiring additional spectral resources [2].
For a narrowband MIMO systems, the channel is represented
as a scalar matrix, and the received signals are instantaneously
mixed. In this scenario if accurate channel information is
available at receiver side, the QR decomposition (QRD) [3]
can be used to convert the channel matrix into upper triangular
structure, consequently successive interference cancellation
can be used to recover the set of source signals [4].

For a frequency selective (FS) MIMO systems, the receivers
have different time delayed versions of the transmitted signals
which arrived over multiple paths. For this scenario the
channel matrix cannot represent an instantaneous scalar
mixture. Instead, polynomial matrices are required to describe
FS MIMO channels, where each element is a finite impulse
response (FIR) filter [5]. A similar approach in [4] can be
taken by extending the scalar QRD to polynomial-matrix
QRD (PQRD) as in [6], wherein the PQRD is used to
transform FS MIMO systems into SISO subsystems. The
proposed method has been implemented for vertical Bell

Laboratories layered space time (V-BLAST) and horizontal
Bell Laboratories layered space time (H-BLAST) encoding
transmitter architectures.

In [7], the authors used an iterative procedure for approx-
imating the PQRD—first proposed in [8]—to factorize the
broadband channel matrix into an upper triangular polynomial
matrix and a paraunitary (PU) polynomial matrix, or multi-
channel all-pass filters. Application of the PU matrix at the
receiver, via an H-BLAST encoding architecture, enabled the
conversion of the MIMO equalization problem into a set of fre-
quency selective SISO problems. The intersymbol interference
(ISI) in each sub-channel is then alleviated using minimum
mean square error (MMSE), frequency-domain equalization
at the receiver. The authors showed that the PQRD-based
approach outperforms a QRD-based, orthogonal frequency
division multiplexing (OFDM) system.

There are two main classes of time-domain, iterative al-
gorithms for approximating the polynomial eigenvalue de-
composition (PEVD): second-order sequential best rotation
(SBR2) [9] and sequential matrix diagonalization (SMD) [10].
The SBR2 algorithm was the first algorithm for calculating the
PEVD of parahermitian (PH) polynomial matrices. Continuing
research into the operation of the SBR2 algorithm has led to
the development of an algorithm for calculating a PQRD [8].
The SMD algorithm, on the other hand, has faster convergence
and designs relatively shorter filters, as shown in [10]; and
so is more suitable for broadband MIMO communications.
Having shorter filters is an important factor for equalization,
particularly Turbo equalization. Therefore, in this paper, we
develop an SMD-based PQRD algorithm and then demonstrate
its applicability to the FS MIMO channel equalization prob-
lem.

The rest of this paper is organized as follows. In Sec-
tion II, the polynomial matrix QRD based SBR2 approach is
described. In Section II-B, we introduce the proposed PQRD
algorithm based SMD concept, and the complexity of each
method is evaluated in Section II-C. The applicability of new
PQRD algorithm for MIMO channel equalization problem is
explained in Section III. Simulation results are presented in
Section IV, which show the potential performances of the new
PQRD algorithm. Finally, conclusions are drawn in Section V.
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A. Notation

In this paper polynomial matrices and vectors are repre-
sented by bold uppercase and bold lowercase characters, e.g.,
A[τ ] and a[τ ], respectively. Taking the z-transform of A[τ ]
gives

A(z) =

t2∑
τ=t1

A[τ ]z−τ , (1)

which is a polynomial in the indeterminate variable z−1, and
has entries aij(z) =

∑t2
τ=t1

ajk[τ ]z
−τ . A transform pair as

in (1) is abbreviated as A(z) •—◦ A[τ ] in the following.
Throughout this paper, square brackets represent dependency
of the variable on discrete time, whereas parentheses denote
dependency on continuous variables.

The polynomial matrix in (1) is parahermitian: Ã(z) =
A(z) ∀z, where Ã(z) is the paraconjugate transpose of A(z),
i.e. Ã(z) = AT

∗ (z
−1) and the asterisk denotes complex

conjugation of the polynomial coefficients. The matrix Q(z)
is a paraunitary (PU) polynomial matrix, if it satisfies

Q(z)Q̃(z) = Q̃(z)Q(z) = Ip , (2)

where Ip is the p × p identity matrix. Finally the Frobenius
norm, or F-norm, of the polynomial matrix A(z) ∈ Cp×q is
defined as

‖A(z)‖F =

√√√√ t2∑
τ=t1

p∑
j=1

q∑
k=1

|ajk[τ ]|2 . (3)

II. POLYNOMIAL MATRIX QR DECOMPOSITION

The PQRD in [8] is a time-domain iterative algorithm
which applies PU operations in order to factorize a square,
or rectangular, polynomial matrix, such as that in (1), into an
upper triangular polynomial matrix. The aim of PQRD when
applied to a polynomial matrix A(z) ∈ Cp×q is to calculate a
PU matrix Q(z) ∈ Cp×p such that

Q(z)A(z) ≈ R(z) , (4)

where R(z) ∈ Cp×q is an upper triangular polynomial
matrix. In contrast to PEVD, which only operates on PH
polynomial matrices, PQRD is not restricted to any structure
or requirements of the polynomial matrix A(z).

A. The PQRD algorithm by SBR approach

In [8], the authors generalize the SBR2 concept to obtain
an iterative algorithm for calculating the PQRD. At each iter-
ation, the algorithm drives one polynomial coefficient, located
below the main diagonal, to zero. The algorithm begins by
locating the dominant polynomial coefficient with maximum
energy situated beneath the diagonal of A(z), i.e. it finds
the coefficient ajk(τ), for j > k. An elementary polynomial
Givens rotation (EPGR) is then applied to A(z) such that the
dominant coefficient is annihilated. An EPGR takes the form

of a Givens rotation preceded by an elementary time shift
matrix. For example, a 2× 2 EPRG is given as follows:

G(α,θ,φ,τ)(z) =

[
ceiα seiφ

−se−iφ ce−iα

] [
1 0
0 zτ

]
=

[
ceiα seiφzτ

−se−iφ ce−iαzτ

] , (5)

where c and s define the cosine and sine of the angle θ
respectively. The polynomial matrix G(α,θ,φ,τ)(z) in (5) is
clearly PU. Applying an appropriate EPGR to the polynomial
matrix A(z) as follows

A′(z) = G(j,k,α,θ,φ,τ)(z)A(z) , (6)

where the indices j, k and τ define the position of the dominant
polynomial coefficient, which is to be eliminated. Following
the application of the EPGR, the dominant coefficient has been
driven to zero and so a′jk(0) = 0, the diagonal coefficient
a′kk(0) is real and will have increased in magnitude squared
such that |a′kk(0)|2 = |akk(0)|2 + |ajk(0)|2.

Then an inverse time-shift PU matrix B(j,τ) is applied to
A′(z) to obtain

A′′(z) = B(j,τ)A′(z) , (7)

the matrix B(j,τ) ∈ Cp×p takes the form of an identity matrix
with the exception of the jth diagonal element which is z−τ .
In ith iteration, the algorithm computes the following p × p
PU matrix:

Qi(z) = B(j,τ)G(j,k,α,θ,φ,τ)(z) , (8)

where i = 1, 2, ..., L. Here, L represents an unspecified
number of iterations.

The algorithm continues with the application of Qi(z) to the
modified matrix A′′(z) at the ith iteration. This process repeats
until all the coefficients below the main diagonal of A′′(z)
are sufficiently small in magnitude and satisfy the stopping
condition:

ajk(τ) < ε , (9)

where ε > 0 is an arbitrary small value. The PU matrix Q(z)
in (4) is given by:

Q(z) = QL(z)...Q2(z)Q1(z) . (10)

B. The PQRD algorithm by SMD approach (SM-PQRD)

In this paper, a new time-domain iterative algorithm for
computing the PQRD is introduced based on the SMD con-
cept, where at each iteration the PU matrix Q(z) calculates
a PU matrix of the form as in (10) to satisfy (4). The
algorithm begins by factorizing the zero-lag matrix A[0] into
an upper triangular matrix, using the scaler QR decomposition:
A[0] = QA′[0]. This transfer all elements beneath the main
diagonal in A[0] onto the diagonal elements of A′[0]. Note that
calculation of Q is only based on the scaler QRD; however,
the matrix Q is applied to A(z) in order to factorize the zero-
lag matrix. Thus, letting Q(0)(z) = Q, we have R(0)(z) =
Q(0)(z)A(z). Subsequently, at ith iteration, i = 1, 2, ..., L, the
algorithm has two steps:
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1) Transfer the dominant row situated beneath the diagonal,
with index j, at lag τ , on to A[0]. This is achieved
with a time-shift PU matrix B(j,τ) as in (7).

2) Factorize A[0] via a scalar QRD: A[0] = Q(i)A′[0].
Thereafter, at each iteration compute a PU transforma-
tion: R(i)(z) = U (i)(z)R(i−1)(z), in which

U (i)(z) = Q(i)(z)B(i)(z) . (11)

The term “dominant row” refers to the row situated beneath
the diagonal of an intermediate variable R(i)(z), with the
greatest squared L2-norm. Specifically, a modified row vector
r̂
(i−1)
j [τ ] ∈ C(p−1) is defined by excluding the upper triangular

rows including the diagonal element:

‖r̂(i−1)j [τ ]‖2 =

√√√√j−1∑
k=1

|r(i−1)j,k [τ ]|2, for j = 2, 3, ..., p ,

(12)
where r(i−1)j,k [τ ] represents the element in the jth row and kth
column of R(i−1)[τ ] at lag τ .

The SM-PQRD algorithm searches R(i−1)[τ ], ∀τ , for the
modified row r̂

(i−1)
j [τ ] with the maximum L2-norm, given by

the parameter set

{j(i), τ (i)} = argmax
j,τ
‖r̂(i−1)j [τ ]‖2 . (13)

The iteration continues until R(L)(z) is sufficiently factorized
into an upper triangular matrix, such that the dominant row
norm satisfies

max
j,τ
‖r̂(L)j [τ ]‖2 ≤ ε , (14)

where ε is a pre-specified small value. After L iterations, SM-
PQRD finds an approximate PQRD.

R(L)(z) = Q(L)(z)A(z) , (15)

where Q(L)(z) =
(
U (L−1)(z) ... U (1)(z)Q(0)

)
is the resul-

tant PU matrix.
In the following, the maximum element SMD (ME-SMD)

idea in [10] is extended to the PQRD problem: the maximum
element SM-PQRD (MESM-PQRD). Computationally less
intensive than SM-PQRD, searches for the polynomial coef-
ficient with maximum energy situated beneath the diagonal
instead of the dominant row, i.e. it maximizes the L∞ norm
instead of the L2 norm in (12). So the search for the optimum
parameter set performed by ME-SMD at every iteration i
becomes

{j(i), τ (i)} = argmax
j,τ
‖r̂(i−1)j [τ ]‖∞ . (16)

Proofs of convergence for both SMD and ME-SMD algorithms
can be found in [10].

C. Algorithm Complexity
The computational complexity of the two proposed PQRD

algorithms is investigated by calculating the number of arith-
metic operations in each iteration. The complexities in Table I
are derived for polynomial matrices A(z) ∈ Cp×q , where, at
the ith iteration, is of order Ti. Note the value of Ti grows at
each iteration. Here, O (.) denotes the big-O notation for the
measure of computational complexity.

TABLE I: Order comparison of PQRD search methods.

method norm calc. comparisons total

SBR-PQRD O (0) O
(

p(p−1)
2

Ti

)
O

(
p(p−1)

2
Ti

)
SM-PQRD O

(
p(p−1)

2
Ti

)
O ((p− 1)Ti) O

(
p(p−1)

2
Ti

)
MESM-PQRD O (0) O

(
p(p−1)

2
Ti

)
O

(
p(p−1)

2
Ti

)

III. APPLICATION OF PQRD TO MIMO CHANNEL
EQUALIZATION

The system block diagram for MIMO PQRD communica-
tion system is shown in Fig. 1. We consider a FS MIMO sys-
tem where, without loss of generality, the number of transmit
and receive antennas is M . A set of source signals x(z) ∈ CM
is transmitted over a multipath channel with channel matrix
A(z) ∈ CM×M , which takes the form of polynomial matrix.
The received broadband signals v(z) ∈ CM are give by

v(z) = A(z)x(z) + n(z) , (17)

where n(z) ∈ CM are spatially and temporally uncorrelated
Gaussian noise signals with zero mean and covariance matrix
σ2
nIM . The PQRD of the channel matrix can be calculated

at the receiver to obtain the FIR PU matrix Q̃(z) – decoder
matrix – which is applied to the received signals thus:

y(z) = Q̃(z)v(z) = Q̃(z)A(z)x(z) + Q̃(z)n(z) . (18)

The convolutive mixing model can be rewritten as

y(z) = R(z)x(z) + n′(z) , (19)

where n′(z) = Q̃(z)n(z) and R(z) is an upper triangular
polynomial matrix. The MIMO channel problem is converted
into equalization of a set of M SISO channels with successive
interference cancellation.

IV. SIMULATION RESULTS

In this section, simulation results are presented to illustrate
the performance of the proposed SMD-based PQRD algo-
rithms. The first set of simulations presented in Section IV-C
investigates the evolution of the energy minimization beneath
the main diagonal of A(z), for each iteration of the proposed
algorithm. The second set of simulations, analyzes the effec-
tiveness of proposed PQRD algorithm when applied to MIMO-
channel equalization problem in terms of bit error rate (BER)
performance. Results are averaged across an ensemble of 1000
random realizations of the channels.
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Fig. 1: PQRD-based MIMO communication system.

A. Performance Metric

The PQRD algorithms proceed by minimizing the energy
under the main diagonal of A(z) in an iterative fashion. The
energy that remains below the diagonal at the ith iteration is
given by

E(i) =

q∑
j=2

∑
τ

‖r̂(i)j [τ ]‖2 , (20)

where |r̂(i)j [τ ]‖ is the modified norm vector defined in (12).
This can be normalized by the total energy, or the F-norm of
A(z), i.e.

E(i)
norm =

E(i)

‖A(z)‖F
. (21)

B. Simulation Scenario

In our simulation scenario, the coefficients of A(z) ∈ C5×5

with order 100, are drawn from the randomized source model
that have zero mean and unit variance. The PQRD algorithms
are allowed to run for L = 250 iterations, a truncation
parameter of µ = 10−6 and a stopping threshold of ε = 10−6

were used. The metric in (21) is computed at each iteration,
along with the elapsed execution time.

C. Algorithm Convergence

The ensemble average of the measure in (21) was calculated
for the new PQRD methods SM-PQRD and MESM-PQRD
and the prior art, SBR-PQRD. In Fig. 2, we see that the
SMD-based PQRD algorithm converge significantly faster than
SBR-PQRD. This is because our SMD-like approach transfers
more energy to the main diagonal of the zero-lag matrix, per
iteration, than the SBR2-based method, which only moves the
energy of one coefficient situate below diagonal.

Fig. 3, shows normalized energy beneath the diagonal,
E

(i)
norm, versus elapsed system time Ti as a function of the

iteration index i. Note that we show the logarithm of (21),
which takes into account the quadratic term. It is clear that
the PQRD-based SMD type algorithms have a considerably
higher computational complexity than the SBR-PQRD algo-
rithm, which is due to the necessity to apply a full unitary
matrix for every lag τ of R(i)(z) rather than just a simple
Givens rotation. The extra cost of the SMD based PQRD
algorithms goes towards unlocking performance regions in

Fig. 2: Ensemble average for normalized lower triangular
energy E(i)

norm vs. algorithm iterations.

Fig. 3: Ensemble average for normalized lower triangular
energy E(i)

norm vs. algorithm execution time.

terms of reduction of E(i)
norm that are inaccessible to SBR-

PQRD algorithm

D. BER Performance

In this section, the BER performance for the MIMO PQRD-
based communication system is studied. The channel matrix
considered to be a constant power delay profile with equal
average gain for each tap and the coefficients of the channel
matrix, are drawn from a zero-mean, complex Gaussian, wide
sense stationary (WSS) distribution [7]. The FS transmission
channel A(z) ∈ C3×3, are chosen to be order five; thus can
be represented by 3 × 3 frequency selective systems, which
has five-path fading components from the jth input to the kth
output. We assume receiver has perfect channel knowledge.

A turbo equalizer is utilized at the receiver in order to mini-
mize the multipath delay spread caused by FS channel. Turbo
equalization [11] is known as an iterative interference can-
cellation and decoding technique for coded data transmission
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Fig. 4: Average coded BER performance for the MIMO
PQRD-based communication system, using the Turbo encod-
ing and decoding process.

over ISI channels. Furthermore, the binary phase shift keying
(BPSK) modulation scheme was used for evaluation purposes,
extension to complex constellation is straightforward.

Fig. 4 shows BER performance for 3 × 3 MIMO-PQRD
system as a function of signal to noise ratio (SNR). Also,
identical performances are observed for all PQRD methods.
The reason for this is that PU decoder matrices produced by
the PQRD algorithms have similar order. The performance of
a Turbo equalizer is strongly dependent on the filter lengths.

V. CONCLUSION

This paper introduces two algorithms for calculating the
QRD of polynomial matrices (or PQRD). These new PQRD
algorithms can be seen as extensions of the SMD idea,
originally proposed for computing the PEVD in [10]. Simula-
tion results show that the proposed PQRD methods converge
significantly faster than state-of-the-art algorithms, although
exhibiting comparable execution times. Applicability of our
PQRD method to frequency selective (FS) MIMO-channel
equalization has also been demonstrated, where similar BER-
performance results to the prior art was observed.
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