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Abstract—In video coding, in-loop filtering has attracted
attention due to its increasing coding performances. In this
paper the shearlet-based loop filter is proposed using a spar-
sifying transform, the shearlet transform, which can identify
the important structures of natural images such as edges in the
sparse transform domain. This allows for separating efficiently
the important information from noise components. Our novel
approach for in-loop filtering is to apply a shearlet transform
to the decoded image, separating important structures from
noise and perform an inverse shearlet transform combined with
Wiener filtering. This effectively removes compression artefacts
due to quantization noise and keeps the important features of
the original image. Simulation results show that our shearlet
based loop filter can improve the state-of-the-art video coding
standard HEVC through up to 10.5% bit rate reduction along
with improved subjective visual quality.

Index Terms—shearlets, sparsity, in-loop filtering, Wiener fil-
tering, classification,

I. INTRODUCTION

The latest video coding standard, HEVC [1], [2] comprised
of two in-loop filters. First the deblocking filter (DBF) [3]
to mainly reduce blocking artefacts and second the sample
adaptive offset (SAO) [4] to further reduce coding artefact after
DBF achieving high bit rate reductions. Finally a third in-loop
filter, the adaptive loop filter (ALF) [5] was proposed within
the standardization process but in the last step dismissed.
All loop filters have in common that they take the decoded
image as an input and alter the pixel values aiming to reduce
the distance between the reconstructed and original samples.
The improved image gets in the picture buffer (see Fig. 1)
which typically leads to better subsequent predictions, i.e.
further coding gain of frames predicted from the current one.
The adaptive loop filter approaches this task by classifying
each pixel location into different classes. All pixel locations
with same gradient direction and intensity are grouped into
the same class, which eventually gives a partition of the set
of all pixel locations. After that a Wiener filter is applied
for each of the classes leading to a de-noised reconstructed
image. The filter information is signaled to the bitstream. The
drawback of this approach is that through the classification
process in image domain quantization noise is not identified
and separated and compression artefacts are hardly removed
through the following filtering. The main idea of our approach
for in-loop filtering is to build classes corresponding to noise
components and the important structures of the original image
such as edges and textures, followed by applying a Wiener
filter for each of those classes. This would effectively perform

de-noising, attenuating noise while keeping the important
features of the original image through Wiener filtering. The
fundamental property of shearlets [6], [7] is that the essential
information of the image governed by anisotropic features such
as edges can be identified by only a few shearlet coefficients
whose absolute values are large while most of its coefficients
are nearly zero. This leads to sparse representations for a large
class of natural images, which means those images can be
sparsely approximated by taking a few significant coefficients.
This property is beneficial not only for data compression
but also for de-noising, feature extraction, classification and
other higher level tasks. The underlying assumption for our
approach is that shearlet coefficients with large absolute values
of the original image are less sensitive to quantization noise
so that they still correspond to the important structures of the
original image even after they are corrupted by quantization
noise while the rest of the shearlet coefficients essentially
corresponds to noise components. This allows us to build two
classes, one for important structures and one for noise by
simply classifying each shearlet coefficient depending on its
absolute value. For that reason the shearlet transform is applied
to the decoded image to compute its shearlet coefficients
and each of them is classified as significant corresponding
to a large absolute value and non-significant corresponding
to a small absolute value. After that classification we apply
a Wiener filter for each class to de-noise the distorted image
followed by the inverse shearlet transform. Ideally this pro-
vokes a suppression of coding artefacts and an amplifying of
details in the image.

The paper is structured as follows. In section II we briefly
review the basic concept of shearlets. In section III the main
procedure of our proposed in-loop filter called shearlet-based
loop filter (SLF) is explained. Section IV shows numerical
results and analyses the coding performance and conclusions
are drawn in section V.

II. SHEARLETS AND SHEARLET TRANSFORM

Shearlets are defined by applying a parabolic scaling matrix
Aj , a shear matrix Sk and translation for a fixed 2D function
ψ, which is defined on R2, as follows:

ψj,k,m = |Aj |
1
2 ψ(SkAj(· −m)) (1)

where |Aj | is the determinant of Aj and

Aj =

(
2j 0

0 2d
j
2 e

)
, Sk =

(
1 k
0 1

)
for j, k ∈ Z,m ∈ Z2.
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While the scale matrix Aj and the translation operator
generate shearlets at different scales and positions in the image
domain the shearing operator Sk establishes a rotation which
changes the orientation of the generating function ψ. Now
combining Aj with Sk provides localized anisotropic functions
which are well adapted for anisotropic features such as the
edge curves of images. This is illustrated in Fig. 3.

In context of image processing a shearlet system is a set of
shearlet filters (F1, ..., FK) which can be applied to an image
X of dimension N×M and each filter Fk is a discrete version
of a shearlet defined in (1). The number of filters K in the
shearlet system is specified by two parameters, the number of
scales L and the number of directions per scale D. Assume
we have L = 3 scales and D = 4 directions for each scale (it
is also possible to have a different number of directions for
each scale). Then the shearlet system consists of 3 · 4 filters
and one low-pass filter, in total 13 shearlet filters. Each filter
F1, ..., FK is applied separately to the image X through the
2D convolution operator, which leads to the shearlet transform
S:

S(X) = ((X ∗ Fk)(m))(k,m)∈Λ (2)

where Λ is a set of indices for the shearlet coefficients. The
index set Λ is given as

Λ = {(k,m) : k = 1, . . . ,K, and m ∈ D}

where

D = {(m1,m2) ∈ Z2 : 1 ≤ m1 ≤ N, 1 ≤ m2 ≤M}

is a set of all pixel locations of X . For a detailed introduction
to shearlets we refer the reader to [8]. Fig. 4 illustrates the
sparsity of the shearlet transform. Here the shearlet transform
corresponding to a shearlet system with 3 scales and 4
direction per scale is performed for an input image resulting
in 12 coefficient images (low-pass image omitted). Bright
values correspond to high magnitude while dark blue values
correspond to small magnitude of shearlet coefficients.

III. SHEARLET-BASED LOOP FILTER

An essential step of the shearlet-based loop filter is that
the de-noising process takes place in the transform domain
after applying the shearlet transform. SLF is performed in
addition to a coding/decoding procedure after DBF and SAO
is performed as illustrated in Fig. 1 and 2. The filter operation
takes place within the coding/prediction loop. The in-loop
filtering process may reduce the coding noise by filtering the
reconstructed image within the shearlet domain with Wiener
filters created to minimize the distance from the original image
as explained in next subsections. The filter coefficients are
coded. The transmission and parsing of the filter information
to/from the bitstream is shown in Fig. 1 and 2 as dotted lines.

A. Shearlet transform and classification

Assume the shearlet system consists of K shearlet filters
(F1, ..., FK), where K is specified through the number of
scales and directions per scale. We want to point out that the
number of shearlet filters is essential for the trade-off between
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complexity and coding performance as more shearlet filters
increase the number of operations to perform the shearlet
transform but on the other hand the more redundant the system
the more beneficial for de-noising, which will be explained in
detail in section V. Once the shearlet coefficients of a decoded
image Y are calculated by (2), they are classified as significant
and non-significant coefficients. Then we obtain the following
two classes Λ0 and Λ1 defined by

Λ0 = {(k,m) : |(Y ∗ Fk)(m)| ≤ T , (k,m) ∈ Λ},
Λ1 = {(k,m) : |(Y ∗ Fk)(m)| > T , (k,m) ∈ Λ} (3)

where a threshold T is either fixed or determined by the
distortion of the decoded image Y . In that case it is calculated
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Fig. 3: Example of shearlet functions for different directions at
same scale (top row) and different scales with same direction
(bottom row).

Fig. 4: Shearlet transform performed on an input image
resulting in coefficient images for different scales (rows) and
different directions (columns).

by

T = κ ·
√

1

N ·M
∑
m∈D

|X(m)− Y (m)|2 (4)

with some fixed constant κ which can be found experimentally.
T will be encoded into the bitstream. Class Λ0 consists of all
non-significant coefficients whose absolute values are smaller
or equal to a threshold T . Class Λ1 consists of all significant
coefficients whose absolute values are larger than T .

B. Wiener filtering and Reconstruction process

After the classification of the shearlet coefficients is per-
formed, we compute Φ1 and Φ2 by

Φr = S−1(XΛr
· S(Y )) for r = 0, 1

where XΛr
is the characteristic function defined by

XΛr
(k,m) =

{
1, if (k,m) ∈ Λr

0, otherwise.
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Fig. 5: Square- and Diamond-shaped Filter

Φ0 and Φ1 are reconstructed images associated with the non-
significant coefficients and the significant coefficients of a
decoded image Y respectively and we have Y = Φ0+Φ1. Note
that important structures of the original image X essentially
correspond to the significant shearlet coefficients of X , namely
(X∗Fk)(m) with |(X∗Fk)(m)| > T for some fixed threshold
T . Now assume that those significant coefficients are not sen-
sitive to quantization noise so that the significant coefficients
of Y essentially correspond to the important structures of X
while most of non-significant coefficients of Y correspond
to noise components. This implies that reconstructed images
Φ0 and Φ1 associated with two classes Λ0 and Λ1 would
essentially contain noise components and important structures
of X respectively. Therefore one can effectively remove noise
while keeping important structures by applying Wiener filters
for Φ0 and Φ1 separately. This can be done by the following
reconstruction using Wiener filters w0 and w1.

Xw = w0 ∗ Φ0 + w1 ∗ Φ1 (5)

In (5) a pair of Wiener filters w = (w0, w1) is chosen so that
it minimizes the mean square error between the original image
X and the reconstructed image Xw̃ with w̃ = (w̃0, w̃1) where
w̃0, w̃1 are arbitrary n× n filters for some fixed integer n. In
other words, w = (w0, w1) is given as

(w0, w1) = arg min
w̃
‖X −Xw̃‖2.

After the calculation of the Wiener filter coefficients, they
are quantized in a similar way as the transform coefficients in
standard video coding. These quantized filter coefficients are
then coded losslessly, e.g. by entropy coding, and transmitted
to the decoder [9]. The novelty is that Wiener filters are not
applied to the decoded image Y itself, but rather in the shearlet
domain to the functions Φ0 and Φ1. Now these functions are
filtered by Wiener filters w0 and w1. Xw is now forwarded
to the picture buffer and later used for subsequent predictions.
For the Wiener filters different filter shapes are applicable. The
filters could be e.g. square- or diamond-shaped, see Fig. 5. In
that example of a 7×7 square-shaped filter only 16 or in case
of a 7× 7 diamond-shaped filter 13 coefficients for each class
have to be sent to the bitstream. In the former case the position
of the coefficient c15 or in the latter case c12 is at the centre
position and is the position to be filtered. Both filter examples
are rotational symmetric, i.e. if the pattern above is rotated
180 degrees, the coefficients are still in the same position.
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IV. SIMULATION RESULTS

For the future video coding standard the Fraunhofer Hein-
rich Hertz Institute developed a new reference module, the
NextSoftware [10], [11]. It encodes all HM configurations
with equal bit rate compared to HEVC test model reference
software (HM version 16.6). We have tested Random Access
(RA) for the quantization parameter values 27, 32, 37 and 42
for 2 GOBs (17 frames) and tested on mainly 4K sequences
as can be seen in Table I. For the implementation of SLF we
used a shearlet system with 65 shearlet filters with 4 scales and
16 directions per scale. For the implementation of the shearlet
transform the shearLab [12] was utilized. Two different filter
sizes are tested at the encoder, a 1×1 filter and a 7×7 square-
shaped filter and then the one with best RD performance is
taken. A filter on/off decision flag is signaled into bitstream to
determine whether to take SLF or not depending on the RD
performance.

Table I shows that 4.21% bit rate reduction can be achieved
in comparison to HEVC on the selected set of test sequences,
which is 0.8% more than ALF achieves. On top of coding
gains there is primarily the subjective improvement to be
noted as can be gathered from the test sequence Johnny.
Here SLF and ALF (Fig. 6) were added to the standard HM
configurations (on top of DBF and SAO). In case of SLF
coding artefacts are removed especially in textured regions
on the right where aliasing artefacts occur due to quantization.
Even details in the image are improved (close to the collar). In
case of ALF coding artefacts are still visible in many regions.

One drawback of SLF is that the shearlets transform is
highly complex due to its redundancy. One possible approach
to resolve this complexity issue is to use Graphic processing
unit, which could already speed up its run-time significantly
[12]. Also, note that the most time consuming part of our
implementation of the shearlet transform is to compute a
fast Fourier transform, whose complexity can be significantly
reduced under certain sparsity assumptions [13]. Based on this
approach, we expect a further speed-up is possible using the
sparsity of the shearlet transform in the frequency domain.
The redundancy of the system has also a significant impact
on the coding gain and such a trade-off between complexity
and coding gain has to be investigated. E.g. for an image with
high variance a shearlet system with many filters are highly
beneficial for achieving a good de-noising performance.

V. FUTURE RESEARCH AND CONCLUSION

In this paper, we have proposed a shearlet-based loop filter.
The main idea of our approach is to decompose a decoded
image Y into two components Φ0 and Φ1 corresponding to
noise and the important structures of the original image X
respectively using the shearlet transform. After this, we apply
Wiener filtering for Φ0 and Φ1 separately followed by a inverse
shearlet transform. Our simulation results show high bit rate
reductions as well as improvement of subjective visual quality.
However a major issue in SLF is that our assumption for the

TABLE I: Coding Gains of SLF and ALF in JEM-7.0.

Resolution Test Sequences SLF ALF

4096 x 2160 Crosswalk -5.64% -1.32%

CampfireParty -1.88% -1.97%
Drums100 -4.03% -3.93%

Tango -4.17% -1.66%
ToddlerFountain -2.13% -2.61%

CatRobot -2.34% -2.00%
3840 x 2160 DaylightRoad -3.63% -2.47%

Rollercoaster -4.13% -5.18%
TrafficFlow -4.24% -2.80%

BuildingHall -3.42% -3.60%
FoodMarket -6.42% -2.54%
ParkRunning -3.59% -3.80%

Traffic -3.38% -3.17%
PeopleOnStreet -5.04% -4.82%2560 x 1600
NebutaFestival -10.50% -10.67%

SteamLocomotive -4.07% -4.08%

Johnny -3.13% -1.73%1280 x 720
KristenAndSara -4.13% -2.94%

Average -4.21% -3.41%

significant shearlet coefficients is not always fulfilled. In fact,
the ideal classes for (3) should be given as

Λ̃0 = {(k,m) : |(X ∗ Fk)(m)| ≤ T , (k,m) ∈ Λ},
Λ̃1 = {(k,m) : |(X ∗ Fk)(m)| > T , (k,m) ∈ Λ}. (6)

We will explore more sophisticated classifications aiming at
the ideal classification (6). In particular, the classification
could be performed by taking different features to take the
dependencies of neighbouring coefficients into account or
trained ones using machine learning algorithms.
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