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Abstract—A rebroadcast attack, in which an image is manip-
ulated and then re-imaged, is a simple attack against forensic
techniques designed to distinguish original from edited images.
Various techniques have been developed to detect rebroadcast
attacks. These forensic analyses, however, face new threats from
sophisticated machine learning techniques that are designed to
modify images to circumvent detection. We describe a framework
to analyze the resilience of rebroadcast detection to adversarial
attacks. We describe the impact of repeated attacks and defenses
on the efficacy of detecting rebroadcast content. This basic
framework may be applicable to understanding the resilience
of a variety of forensic techniques.

I. INTRODUCTION

A number of forensic techniques have been developed to

detect various types of image manipulations [1]. Among these

techniques, there exists what is often referred to as file-

based techniques that are specifically designed to detect any

modification of an original JPEG file, but not necessarily the

nature of the manipulation. These include: (1) analyzing JPEG

compression parameters, JPEG file markers, and EXIF format

and content to determine if the overall JPEG packaging is con-

sistent with the expected properties of the source camera [2],

[3], [4]; (2) analyzing the embedded thumbnail image to

determine if its construction and format are consistent with the

source camera or that of a photo-editing software [5]; and (3)

analyzing the encoded discrete cosine transform coefficients

for evidence of multiple compressions that would arise, for

example, after modifying and saving an image in a photo-

editing software [6], [7]. Recent advances in machine learning

have also been used to automatically detect changes to an

original JPEG file [8], [9], [10], [11], [12].

Despite their efficacy, these techniques suffer from a simple

rebroadcast attack in which an altered image is re-imaged, thus

ensuring that all underlying camera properties will appear as

original. We describe a technique for detecting this type of

attack and its resilience to further adversarial attacks.

II. REBROADCAST ATTACK AND DEFENSE

There are two simple types of rebroadcast attacks generated

by photographing a high-quality printed copy of an image, or

photographing a displayed image on a high-resolution monitor.

These approaches are relatively easy to execute and will result

in an image file that is consistent with a camera original. Two

other types of rebroadcast attacks are generated by scanning

with a high-resolution flatbed scanner a printed copy of an

image or capturing a screen-grab of a displayed image on a

monitor. Unlike the first two approaches, these approaches will

require some further manipulation to add the necessary JPEG

file details to be consistent with a camera original.

Many techniques have been developed to detect rebroadcast

attacks. These include the use of higher-order wavelet statistics

to identify scanned images [13], local binary patterns to iden-

tify displayed images [14], Markov-based features to identify

printed images [15], physics-based features to identify printed

images [16], noise statistics and double JPEG compression to

identify displayed images [17], aliasing patterns to identify

displayed images [18], image-edge profiles to identify dis-

played images [19], and a convolutional neural network to

identify displayed images [20]. A few other techniques attempt

to simultaneously detect rephotographed printed and displayed

images [21], [22], [23].

The simultaneous detection of all four types of rebroadcast

attacks was first described in [24]. We will briefly summarize

these results. The authors in [24] collect a dataset of 14, 500
original images from 1, 294 distinct cameras and 14, 500
rebroadcast images from a diverse set of distinct recapture

devices: 234 displays, 173 scanners, 282 printers, and 180
recapture cameras. The performance of four different classi-

fication techniques is evaluated against this dataset: Three of

the techniques are based on hand-crafted features [13], [14],

[15] coupled with a non-linear support vector machine (SVM),

and the fourth technique is based on a convolutional neural

network (CNN). The CNN, described below, significantly

outperforms the other approaches, so we will focus only on

this classifier.

As proposed in [24], we train a CNN to classify small image

blocks as original or rebroadcast, where a rebroadcast image

block can be any of the four classes described above. The input

to the network is a monochromatic (red channel) 64×64 image

block I , and the output is a two-dimensional vector given

by the function φ(I) ∈ R
2. The network consists of seven

convolutional layers and two fully connected layers followed

by a log-softmax layer. The first convolutional layer consists

of 16 predefined Gaussian filters residuals with two different

filter sizes and 8 different standard deviations. The detailed

description of all hyper-parameters can be found in [24].

The set of 14, 500 original and 14, 500 rebroadcast images
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is randomly divided into 60:20:20 training, validation and

testing sets. These images are partitioned into 4.35, 1.44, and

1.45 million training, validation, and testing image blocks.

The overall training, validation, and testing accuracies are

98.85%, 98.46%, and 98.61%, with almost no difference in

the detection of original or rebroadcast.

Here we analyze the vulnerability and resilience of this

CNN-based approach towards multiple and repeated counter-

forensic attacks that are designed to modify images to circum-

vent detection. A similar type of attack was proposed in [30]

in which the authors described a gradient-based attack against

SVM classifiers. Expanding on this basic idea, we explore the

impact of repeated attacks and defenses on CNN classifiers.

III. A SECOND ATTACK AND DEFENSE

In the previous section, we see that a CNN can be trained

to effectively distinguish original from rebroadcast images. In

this section, we evaluate the resilience of this network to a

counter-forensic attack.

Given an input image block I (we will refer to this block

simply as an image), the output of our CNN is a two-

dimensional vector φ(I). The input is classified as original

or rebroadcast based on the sign of the following function:

f(I) = ~vTφ(I), (1)

where ~vT =
(

−1 1
)

. The function f(·) computes the

difference between the two outputs and classifies an image

as original if this difference is less than zero, f(I) < 0, and

rebroadcast otherwise.

The goal of attacking this CNN is to modify a rebroadcast

image I (with f(I) ≥ 0) such that it will be classified as

original (f(I) < 0). This attack can be formalized as an

optimization of the following form:

Î = arg min
I

f(I). (2)

We solve this optimization problem using the gradient descent

method with momentum which iteratively updates the solution

according to the following update rule at the kth iteration (k =
0, 1, 2, · · · ):

Ik+1 = Ik − α
(

mf ′(Ik−1) + f ′(Ik)
)

, (3)

where m is the momentum, α is the learning rate, and f ′(·)
is the gradient of Equation (1). Our CNN is implemented

using the PyTorch framework [31]. PyTorch’s autograd me-

chanics provides a reverse automatic differentiation system

which yields the desired gradient f ′(·). The gradient descent

optimization is initialized with I0 = I , f ′(I−1) = 0, and

momentum m = 0.9. The learning rate is initialized to

α = 1e−4 and is decreased by a factor of 0.9 when the loss

plateaus. When the learning rate is reduced, the momentum

is set to m = 0 for that iteration and reset to m = 0.9 in

subsequent iterations.

The gradient descent iteration terminates under any of the

following conditions: (1) the modified rebroadcast image is

classified as original: f(Ik) < 0; (2) the learning rate α is

less than a predefined threshold of 1e−8; or (3) the number

of iterations k exceeds a predefined threshold of 1, 000.

A successful attack is one in which the modified rebroadcast

images are mis-classified as original and the average difference

between the rebroadcast and modified rebroadcast images is

minimal (we measure image difference using mean-squared

error, MSE). We do not explicitly penalize large deviations of

MSE to give the attacker as much flexibility as possible. We

have found, however, that a small learning rate typically (but

not always) yields a modified rebroadcast image that is similar

to the input rebroadcast image.

Starting with 0.63 million rebroadcast images, we generate a

corresponding set of 0.63 million attack-rebroadcast images.

The true positive rate (correctly classifying rebroadcast im-

ages) from the previous section is 98.54%. This rate plunges

to 0.005% on the attack-rebroadcast images. At the same

time, the average MSE between the rebroadcast and attack-

rebroadcast images is only 0.96 (all images are integer-valued

and span an intensity scale of [0, 255]).

IV. ITERATIVE ATTACKS AND DEFENSES

We have seen that a CNN is highly effective at detecting

a broad range of rebroadcast attacks. We have also seen that

this same CNN is vulnerable to a fairly simple counter-forensic

attack in which a rebroadcast image can be slightly modified

to evade detection. In this section we ask if a newly trained

CNN can detect this new attack, and if repeated attacks against

this defense are successful or not.

A. Single attack

The set of original and rebroadcast images described in

Section II is denoted as O and R. The CNN trained to

discriminate between these images is denoted as D1. In the

previous section, we describe how D1 can be attacked. In this

section we explore whether this type of attack can be defended

against repeated cycles of detect (D) and attack (A):

(D1) The first full detect/attack cycle starts with a defense

against a rebroadcast attack. In particular, a CNN D1 is

trained to distinguish between original O and rebroad-

cast R images as described in Section II.

(A1) The first cycle ends with an attack against D1 in which

attack-rebroadcast images R1 are generated from R
by attacking D1 using the gradient descent method

described in Section III.

(D2) In the second defense, a new CNN D2 is trained on

{O,R,R1}, where, all of the rebroadcast and attack-

rebroadcast images are bundled together into a single

class.

(A2) This cycle ends with an attack against D2 in which

attack-rebroadcast images R2 are generated from R by

attacking D2.

(Di) In the ith defense, a CNN Di is trained on

{O,R,R1, · · · ,Ri−1}.

(Ai) This cycle ends with an attack against Di in which

attack-rebroadcast images Ri are generated from R by

attacking Di.
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Fig. 1. Detection accuracy for detectors Di against original O, rebroadcast, R, and attack-rebroadcast Rj images, corresponding to (a) a single attack; (b)
multiple attacks; and (c) multiple (slow) attacks. The light gray bars (i > j) correspond to the accuracy against content for which the CNN detectors are
trained. The dark gray (i = j) and white bars (i < j) correspond to the accuracy for attack-rebroadcast images against detectors in the current and previous
detect/attack cycles. The dark gray bars are each annotated with an MSE value corresponding to the difference between the rebroadcast and attack-rebroadcast
images (the integer-valued images are on an intensity scale of [0, 255]). All bars to the right of these dark gray bars are white.

In order to avoid a skewed training dataset, in the ith cycle,

the rebroadcast class is constructed from a randomly selected

fraction of 1/i rebroadcast images R along with their corre-

sponding attack-rebroadcast images in {R1, · · · ,Ri−1}. This

sampling ensures that the rebroadcast class size stays the same

in each cycle.

We carry out six detect/attack cycles. The CNN training

(detect) and the gradient descent (attack) are the same as

described in the previous sections. Shown in Fig. 1(a) are the

detection accuracies of these six CNNs on each subset of origi-

nal, rebroadcast, and attack-rebroadcast images. Each detector

Di is trained on the images rendered as light gray bars. In

each case, and as expected, detection accuracy remains high on

these images (above 97%). We see, for example, that the CNN

D3 can learn to discriminate original (O) from rebroadcast

(R) as well as attack-rebroadcast (R1 and R2) images. This

detector, however, is unable to defend against a new attack

R3 as shown by the low detection accuracy rendered in dark

gray. As shown in Fig. 1(a), this pattern continues for all

detectors Di: CNN Di detects {R,R1, · · · ,Ri−1}, but not

the subsequent attack Ri.

The value above each dark gray bar in Fig. 1(a) corre-

sponds to the average MSE between the rebroadcast and

attack-rebroadcast images. Although the classifier on repeated

detect/attack cycles is not able to defend against new attacks,

we do see that the attack does become more difficult as the

MSE grows from 1.0 for R1 in D1 to 14.7 for R6 in D6.

Despite the slight increase in MSE after repeated detect/attack

cycles, it would appear as if the CNN cannot effectively defend

against repeated attacks.

Note, however, that we only test the attack-rebroadcast

images Ri against a single CNN Di. When we test Ri

against other CNNs in the earlier detect/attack cycles, we

find reason for hope. The white bars in Fig. 1(a) correspond
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to the detection accuracy of Ri against all classifiers in the

earlier detect/attack cycles. The attack-rebroadcast images R6,

for example, are thoroughly mis-classified by D6 but are

correctly classified at a high rate by D2 through D5. Perhaps

this shouldn’t be surprising since the attack is designed to

circumvent a single classifier, D6.

In the next section, we will explore a detect/attack cycle in

which the attacker now has to attack all previous classifiers to

avoid detection.

B. Multiple attacks

In the previous section we see that a gradient descent attack

is successful at defeating a single detector but not all previous

detectors in the cycle. In this section we will test the efficacy

of attacking all detectors in the cycle. The training of each

detector Di is the same as in the previous section. The attack

A1 in the first cycle is also the same, but subsequent iterations

differ in that instead of attacking a single CNN, the attacker

simultaneously attacks all previous CNNs in the cycle:

(A2) In this second attack, attack-rebroadcast images R2 are

generated from R by attacking {D1,D2} using the

gradient descent method described below.

(Ai) In this attack, attack-rebroadcast images Ri are gener-

ated from R by attacking {D1,D2, · · · ,Di}.

The extension from attacking a single CNN to multiple

CNNs is straightforward. In the ith detect/attack cycle, a

rebroadcast image I is modified such that it will be clas-

sified as original by all previous detectors: fj(I) < 0, for

j = 1, 2, · · · , i. As before, the input to the jth CNN is

classified as original or rebroadcast based on the sign of the

following function:

fj(I) = ~vTφj(I), (4)

where ~vT =
(

−1 1
)

, and φj(I) is the output of the jth CNN

Dj .

Following a similar approach as in the previous section, the

gradient descent method with momentum iteratively updates

the solution according to the following update rule at the kth

iteration (k = 0, 1, 2, · · · ):

Ik+1 = Ik −

i
∑

j=1

αj

(

mjf
′

j(I
k−1) + f ′

j(I
k)
)

, (5)

where mj is the momentum, αj is the learning rate, and f ′

j(·)
is the gradient of Equation (4).

The gradient descent is initialized with I0 = I , f ′

j(I
−1) =

0, and momentum mj = 0.9. The learning rate is initialized

to αj = 1e−4 and is decreased by a factor of 0.9 when the

loss fj(·) plateaus. When the learning rate αj is reduced,

the momentum is set to mj = 0 for that iteration and reset

to mj = 0.9 in subsequent iterations. The gradient descent

iteration terminates under any of the following conditions: (1)

the modified rebroadcast image is classified as original by all

CNNs; (2) all of the learning rates αj are less than predefined

threshold of 1e−8; or (3) the number of iterations k exceeds

a predefined threshold of 1, 000.

We carry out three detect/attack cycles. Shown in Fig. 1(b)

are detection accuracies of three CNN detectors on different

images. Each detector Di is trained on the images rendered as

light gray bars. As before, detection accuracy for each detector

remains high on these images (above 97%). By only the second

iteration, we see that the attacker is struggling to defeat the

detectors. In particular, although the attack-rebroadcast images

R3 are able to mostly circumvent detection by D1, D2, and

D3, we see that it comes at the price of a high MSE of 102.7.

That is, in order to circumvent detection, the images have

to be significantly modified in appearance which presumably

would be easily flagged as suspicious. We only perform three

iterations because on the third iteration the MSE is so large

that further iterations seem unlikely to yield an effective attack.

At this point, it seems that the defender has the upper

hand. In the next section, we briefly explore strategies that

the attacker can employ to defeat the defender.

C. Multiple (slow) attacks

In the previous section, the CNN learning rate is initialized

to αj = 1e−4. We hypothesized that a slower learning rate

may benefit the attacker allowing them to both circumvent

detection while minimizing the MSE between the rebroadcast

and attack-rebroadcast images. Shown in Fig. 1(c) are the

results of the detect/attack cycles described in the previous

section with a learning rate of αj = 1e−5. As before, the CNN

detectors can accurately classify the content on which they

are trained, but fail to detect future attacks. And, the slower

learning rate yields significantly lower MSEs, between 0.1 and

3.5. With this lower learning rate, the attacker is victorious. It

remains to be seen if even more detect/attack iterations will

yield larger and prohibitive MSEs.

V. CONCLUSION

A CNN is able to reliably detect rebroadcast attacks. This

CNN, however, is vulnerable to a simple counter-forensic

attack in which a rebroadcast image is modified to appear

as an original image. In repeated detect/attack cycles, the at-

tacker seems to eventually succeed at circumventing detection.

Across these cycles, however, the modified attack-rebroadcast

image degrades in quality.

Although it appears that the attacker has the upper hand, we

assume that the attacker has full knowledge of the defender

(the CNN). It remains to be seen if the attacker can success-

fully circumvent detection with partial or no knowledge of the

defender. Lastly, our attack only modifies a small image block.

It remains to be seen if the attacker can seamlessly piece these

blocks together to create a full-size adversarial image.
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