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Abstract—A computational tool to discriminate healthy people
from people with Parkinson’s Disease (PD) is proposed based
on acoustic features extracted from sustained vowel recordings.
Several approaches based on different feature sets and regulariza-
tion methods (LASSO, Ridge, and Elastic net) are experimentally
compared. The effectiveness of these methods has been evaluated
on a dataset containing acoustic features of 40 healthy people and
40 patients with PD, who have been recruited at the Regional
Association for Parkinson’s Disease in Extremadura (Spain). The
results show relevant differences when varying the initial feature
set but high stability when changing the regularization approach.
The three considered methods have achieved very promising
classification accuracy rates via 10-fold cross-validation analysis,
reaching 88.5%.

Index Terms—Acoustic features, Elastic net, Least absolute
shrinkage and selection operator, Nonlinear speech signal pro-
cessing, Parkinson’s disease, Regularized regression, Ridge.

I. INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease in the world and its incidence is
expected to increase consistently as populations age [1]. PD is
still incurable, but an early diagnosis allows to apply different
therapies or lifestyle changes aimed at improving the patient’s
quality of life.

Early diagnosis of PD is a complex process and relies on
subjective evaluations by neurologists. PD affects coordination
of muscles, including those responsible of speech production,
thus voice alterations are present in the majority of people
affected by PD. Furthermore, speech impairment may be
amongst the first symptoms of PD onset. Consequently, it has
been suggested that acoustic analysis of speech may constitute
an objective, low-cost and non-invasive technique to diagnose
PD in an early stage [2].
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In the last years, different machine learning approaches
for automatic PD diagnosis from speech have been reported,
and a large number of features have been extracted from
acoustic recordings [2]—[5]. Some of these features are highly
correlated, providing redundant information. Besides, due to
the difficulty of recruiting patients, it is common to conduct
experiments with a small number of subjects compared to the
large number of features considered. This may cause computa-
tional problems such as multicollinearity or overfitting, which
produce an overestimation and present limited generalization
performance.

There are different techniques to deal with high dimensional
learning. Filter feature selection methods are computationally
fast, but they do not take into account the classifier. Wrapper
methods use a predictive model to score feature sets. How-
ever, they are computationally expensive. Embedded methods
have the advantage that they include the interaction with
the classification model, while at the same time being less
computationally intensive than wrapper methods [6].

Regularization or penalization methods are the most com-
mon type of embedded methods. These techniques use all the
variables to create a model and then analyze it to deduce
the importance of each variable. In this work three concrete
techniques are applied to PD detection and their performance
is compared: least absolute shrinkage and selection operator
(LASSO) [7], Ridge [8] and Elastic net (Enet) [9].

Several classification experiments, based on different sets
of linear and nonlinear features and the three aforementioned
regularization approaches, are applied to a dataset containing
data of 40 healthy people and 40 patients with PD, who have
been recruited at the Regional Association for Parkinson’s
Disease in Extremadura (Spain). The results are comparatively
analyzed in terms of different aspects: impact of the initial
feature set on detection performance, influence of the concrete
regularization method and complexity of the resulting models.
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The remainder of this paper is organized as follows. Sec-
tion II presents the main information on participants and
speech recordings. Details about feature extraction are given
in Section III. Section IV describes the regularization and
classification framework. The experiments and obtained results
are provided in Section V, together with a discussion. Finally,
the paper ends up by some concluding remarks in Section VI.

II. PARTICIPANTS AND SPEECH RECORDINGS

Speech recordings were collected from 80 Spanish native
speakers. Half of them were healthy: 22 men (55%) and 18
women (45%), and the other half were diagnosed with PD:
27 men (67.5%) and 13 women (32.5%). Their mean age
(£standard deviation) was 66.38 & 8.38 years for the control
group and 69.58 + 7.82 years for the subjects with PD. The
people with PD participating in this study were members of the
Regional Association for Parkinson’s Disease in Extremadura
(Spain). All participants provided written informed consent
and the research protocol received approval from the Bioeth-
ical Committee of the University of Extremadura.

The participants were requested to sustain phonation of /a/
vowel for at least 5 seconds, attempting to maintain steady
frequency and amplitude at a comfortable level. Phonation
onsets were excluded from the recordings. The task was
repeated until three successful recordings per subject were
obtained for posterior averaging purpose.

All speech data were recorded in a quiet room with a low
ambient noise level. The recording equipment was composed
of a portable computer with an external sound card (TASCAM
US322) and a headband cardiod microphone (AKG 520). The
mouth-to-microphone distance was approximately 4 cm during
all recordings. The voice signals were sampled at 44.1 kHz
with 16-bit resolution and stored in WAV format by using
Audacity software (release 2.0.5).

III. FEATURE EXTRACTION

In the signal pre-processing stage, the initial one-second
segments were selected from the sustained vowel recordings.
Next, the waveforms were normalized between -1 and 1.

The study is based on linear and nonlinear acoustic features.
The considered features may be grouped according to the
signal characteristics they are supposed to measure.

The first group of features includes 9 perturbation measures:
four of them are pitch-perturbation features (jitter variants) and
five of them amplitude-perturbation ones (shimmer variants).
The second group is composed of two features related to
Signal-to-Noise Ratio (SNR) measures: Harmonic-to-Noise
Ratio (HNR) and Glottal-to-Noise Excitation (GNE). The
rationale for these measures is that subjects with PD present
incomplete vocal fold closure and this may lead to increased
acoustic noise [10].

Also, features based on Mel Frequency Cepstral Coefficients
(MFCC) are considered. A recent contribution that considers
MFCC-based features extracted from sustained vowel record-
ings to discriminate between patients with PD and healthy
controls is [11]. MFCCs are related to articulator placement,
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which may be affected in PD [12]. Thirteen MFCC param-
eters (0-12th order) are calculated for each frame. The Oth
order one simply represents the average speech energy, and
each higher-order MFCC represents increasingly finer spectral
detail. Frames had a length of 30 ms, with a 50% overlap.
This high number of frame-based parameters is reduced by
calculating the mean values (related to average vocal tract
configuration) and also the standard deviations of the frame-
based parameters (that measure lack of steadiness in the vocal
tract configuration during a sustained vowel production).

The last group of features is based on nonlinear speech
processing. Previous studies have shown the limitations of
the linear source-filter model of speech highlighting the need
of including nonlinear features for effective detection of PD
[13], [14] . The specific features considered are the following:
Recurrent Period Density Entropy (RPDE), Detrended Fluctu-
ation Analysis (DFA), Pitch Period Entropy (PPE) [13], Corre-
lation dimension (D2), and three entropy variants (permutation
entropy, fuzzy entropy and sample entropy).

PD seems to have a differential impact on phonation in
men and women [15]. Therefore, gender has been used as an
additional feature in the classification experiments.

For each acoustic feature, the three replications per individ-
ual were averaged, avoiding the usual practice of considering
measurements within the same subject as independent. This
provided a matrix of 80 rows (one per subject) and 45 columns
(one per acoustic feature plus the gender). The complete list of
acoustic measures and their notations considered in the present

study is shown in Table I.
TABLE I
ACOUSTIC FEATURES.

Perturbation and SNR features Symbol
Jitter relative Jitr
Absolute jitter (%) jita

Relative average perturbation (%) RAP
Pitch perturbation quotient (%) PPQ
Shimmer loc (%) Shimloc
Shimmer in dB (%) ShimdB
Amplitude perturbation quotient (%) | APQ3
Amplitude perturbation quotient (%) | APQS5
Amplitude perturbation quotient (%) | APQ11
Harmonics-to-noise ratio (%) HNR
Glottal-to-noise excitation GNE
Nonlinear features Symbol
Recurrent period density entropy RPDE
Detrended fluctuation analysis DFA
Pitch period entropy PPE

Correlation dimension D2

Permutation entropy PermutEn
Fuzzy entropy FuzzyEn
Sample entropy SampleEn
MFCC-based features Symbol
Mean of M FCC" M’E\JFCC
Standard deviation of M FCC" chircc

IV. FEATURE SELECTION AND REGULARIZATION

Generalized linear models with convex penalties are used
in this paper, including LASSO regression [7] and Ridge

1138



2018 26th European Signal Processing Conference (EUSIPCO)

regression [8]. A mixture of them, Enet regression, is also
considered [9]. All of them exploit sparsity in the data matrix.

Although LASSO and Ridge have a common goal, their
properties differ substantially. Both penalize the magnitude of
features while minimizing the error between predicted and real
observations. These regularization techniques vary depending
on how they assign penalty to the coefficients. In the case
of LASSO regression, it performs a regularization by adding
a penalty equivalent to the sum of the absolute values of
the coefficients. This leads to some coefficients which are
shrunk to zero (or approximately to zero), which effectively
means that the features associated with those coefficients are
eliminated (or given a low weight). In the case of Ridge
regression, the regularization is performed by adding a penalty
equivalent to the sum of the squares of the coefficients, but in
this case, the coefficients are simply shrunk, not setting any
of them to zero. Finally, Enet regression linearly combines the
penalties of LASSO and Ridge methods, becoming a mixture
of both. The three methods are useful to analyze data affected
by multicollinearity and avoid the need of removing features
in advance.

The modelling was conducted with R software by using
glmnet [16] and caret [17] packages. The algorithms use
cyclical coordinate descent, computed along a regularization
path. These algorithms are fast and able to handle large
problems, dealing efficiently with sparse features [18]. The
shrinkage parameter in each case was valued by using a grid
search.

V. EXPERIMENTAL RESULTS

Several classification experiments have been carried out
to analyze the performance and stability of the three regu-
larization methods (LASSO, Ridge, Enet) with four feature
sets extracted from the voice recordings of the 80 people
participating in the study. The gender has been included in
all the sets. With respect to the acoustic features, the first set
consists of perturbation and SNR-based measures, the second
set is composed of nonlinear characteristics, and the third one
includes MFCC-based features. Finally, all the features from
the previous sets are considered.

In order to estimate the model performance on new indi-
viduals, 10-fold cross-validation schemes are considered [19].
Specifically, in 10-fold cross-validation, the original sample is
randomly partitioned into 10 equal-size subsamples. A single
subsample (out of the 10 defined) is retained as the validation
data for testing the model, and the remaining 9 subsamples
are used as training data. The cross-validation process is then
repeated 10 times, with each of the 10 subsamples used exactly
once as the validation data. For each iteration, the metrics
used for analyzing the performance of the detection system
are defined in terms of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) as follows:
accuracy rate = (I'N + T'P)/n, where n is the number of
subjects, sensitivity = TP/(TP + FN), and specificity =
TN/(TN + FP). The 10 results from the folds are averaged
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to produce a single estimation for each metric. For diagnos-
tic purposes, the 10-fold cross-validation is performed in a
stratified way so that each subsample has the same number of
subjects with PD and control subjects.

Table II shows the accuracy rates, sensitivities, and speci-
ficities for the four feature sets and the three methods.

TABLE 11
CLASSIFICATION PERFORMANCE.
Accuracy(%)  Sensitivity (%)  Specificity(%)
Perturbation and SNR features
LASSO 64.4 64.0 64.8
Ridge 69.4 67.5 71.3
Enet 66.3 65.8 66.8
Nonlinear features

LASSO 80.1 79.5 80.8
Ridge 80.0 80.8 79.3
Enet 81.3 81.0 81.5

MFCC-based features
LASSO 83.0 82.0 84.0
Ridge 84.5 83.5 85.5
Enet 84.8 84.5 85.0

All features

LASSO 85.6 83.8 87.5
Ridge 88.5 89.0 88.0
Enet 87.1 87.8 86.5

The results show the low discrimination capability achieved
when using features exclusively based on perturbation and
SNR. Accuracy rates are lower than 70% as well as all the
sensitivities and 2 out of 3 specificities. When the set of
nonlinear features is considered, the accuracies are increased
to around 80%, as well as the sensitivities and specificities.
This leads to an increase with respect to the results obtained
with perturbation and SNR measures from 10% to 15%. This
supports the already established and experimentally tested
theory that traditional linear perturbation methods of voice
signal analysis do not account for the two main biophysical
symptoms of voice disorders, which are complex nonlinear
aperiodicity and turbulent non-Gaussian randomness [20].
The three metrics are increased when MFCC-based features
are exclusively considered. For accuracies, the increase with
respect to the results obtained with nonlinear features ranges
from 2.9% to 4.5%, whereas for sensitivities and specificities
it ranges from 2.5% to 3.5%, and from 3.2% to 6.2%,
respectively. Finally, the best results are obtained when all the
features are used. The best accuracy, 88.5%, is obtained for
Ridge regression, followed by the 87.1% obtained with Enet
method, and, finally, LASSO provided an accuracy of 85.6%.
All of them improve the accuracy rates obtained with the other
feature sets.

ROC (Receiver Operating Characteristic) curves are pre-
sented for the three methods when they were applied to all
features, see figures 1 to 3. The same order of goodness-of-fit
is obtained for the three methods based on AUC (Area Under
Curve) ROC values.

The regularization methods applied in this study consider
two parameters. The first one is «, the mixing parameter,
and it is set to 1 for LASSO, to 0 for Ridge and between
0 and 1 for Enet. The second one is A that defines the amount
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Fig. 1. ROC curves and AUC for LASSO with all features.
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Fig. 2. ROC curves and AUC for Ridge with all features.

of shrinkage in the model, and it is optimized with caret
[17] by cross-validation to achieve the best possible accuracy
results. LASSO and Enet can shrink the regression coefficients
to zero, whereas Ridge can shrink them, but not set them to
zero. Table III shows the number of regression coefficients
remaining in the models after regularization (including the
intercept). The coefficient values for Rigde correspond to all
the acoustic features, gender and intercept in the four datasets.

TABLE III
NUMBER OF REGRESSION COEFFICIENTS CONSIDERED BY THE THREE
APPROACHES.
LASSO Ridge Enet
Perturbation and SNR features 13 13 12
Nonlinear features 9 9 9
MFCC-based features 6 28 14
All features 7 46 17

When the number of acoustic features is not too large
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Fig. 3. ROC curves and AUC for Enet with all features.

(perturbation and SNR or nonlinear cases), LASSO is not
able to filter features and Enet is able to filter only one
perturbation feature. However, when the number of features
increases (MFCC-based features and all features), LASSO is
able to shrink many regression parameters to zero. In fact, it
is able to shrink to zero 22 and 39 parameters out of 28 and
46, respectively. Enet shrinks to zero 14 and 29 parameters,
respectively.

The three applied methods have been designed to work
with many features and a reduced number of subjects. In the
following the results considering all the acoustic features will
be discussed. The data matrix has 80 rows (number of subjects)
and 45 features (44 acoustic features and gender). In general,
this would correspond to a large number of features for a
reduced number of subjects. However, in this context, due
the difficulty of recruiting volunteers suffering from PD the
number of subjects is considered to be moderate.

If the interest is focused on the accuracy, Ridge provides
the best one (88.5%), but keeping all the features. LASSO
only keeps 7 regression parameters related to intercept, gen-
der, PPE, SampleEn, 11900, 0% pocs and o3 poc- This
combination of features does not require estimation of the
fundamental frequency, which is a hard task in the case of
pathological voices. This leads to 85.6% of accuracy. For the
Enet method, the accuracy is increased to 87.1% and the
number of features also increases. In addition to the ones
obtained for LASSO, Enet also considers RPDE, DFA, RAP,
Ky rees Mirroes Murces Ources Oirocs Oyvpoc, and
019 =oc- The fact that sample entropy has been kept in LASSO
and Enet methods instead of other entropy measures allows
to avoid the calculation of more refined and computationally
heavier features such as fuzzy entropy in further studies. The
results also confirm that the gender feature is relevant and
should be taken into account in a PD detection system.
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VI. CONCLUSION

Based on these findings, the adoption of regularization is
recommended as an easy, fast, and effective method to perform
PD detection. The prediction results keep rather stable by
varying the regularization method, despite the fact that the
number of recruited subjects is moderate. Although the best
accuracy is obtained with Ridge, it is noticeable that LASSO
offers the easiest model interpretability, since this method
exclude many features. Enet offers intermediate results both
in terms of interpretability and accuracy.
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