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Abstract—Automated multi-agent robotic systems are a
promising technology for extra-terrestrial exploration. Au-
tonomous control of such systems requires position as well as
orientation awareness. Having a multi-port antenna system like
an antenna array or a multi-mode antenna (MMA) installed
on each agent, position and orientation can be estimated when
the agents cooperatively communicate via radio signals. The aim
of this paper is to derive the fundamental limits for relative,
i.e. anchor-free, joint position and orientation estimation. Using
wavefield modeling and manifold separation, the inclusion of
calibration data from real multi-port antenna systems is possible.
The Cramér-Rao bound (CRB) is derived directly on the received
signal, thus representing a fundamental limit. We then use the
derived bound to analyze the position and orientation estimation
capabilities of a multi-agent system employing MMAs.

I. INTRODUCTION

Multi-agent robotic systems are a promising approach to
fulfill challenging tasks like terrestrial surveillance and dis-
aster management as well as extra-terrestrial exploration. For
autonomous operation, we need both communication between
the agents and a reliable navigation solution. On earth, a
global navigation satellite system (GNSS) can be used in many
scenarios. However, GNSS signal reception can be blocked or
impaired. For most extra-terrestrial missions, GNSS is not an
option. A combined communication and navigation system has
been investigated in [1]. However, it only provides the position
of the agents. In order to generate control commands, e.g. to
achieve a mission goal while keeping a favorable formation
[2], the orientation of the agents must be known as well.
Consequently, we investigate fundamental limits in terms of
the Cramér-Rao bound (CRB) for joint relative position and
orientation estimation.

In this paper we consider a combination of time-of-arrival
(ToA) and direction-of-arrival (DoA). For ToA, the signal
propagation time, or time-of-flight, between agents is mea-
sured to obtain a range estimate. Usually we are dealing
with non-synchronized networks, so two-way ranging, also
called round-trip delay, is performed. The DoA of a signal
can be determined by employing a multi-port antenna system
like an antenna array or a multi-mode antenna (MMA) [3],
[4]. DoA estimation provides angle information, thus enabling
orientation estimation and improving positioning.
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Cooperative positioning refers to collaborating agents for
the purpose of positioning. Shen et al. have derived bounds
for anchored cooperative positioning [5]. The anchor-free case
is analyzed in [6]. Dynamic scenarios are treated by Popescu
et al. in terms of the posterior CRB [7]. Less literature can be
found on the topic of joint position and orientation estimation.
Bounds for the single link case have been derived in [8],
[9]. An extensive framework for fundamental limits regarding
non-cooperative networks having anchors is provided in [10],
where also the benefits of cooperation are analyzed. Usually
ideal antenna arrays like uniform linear array (ULA) or
uniform circular array (UCA) are assumed.

This paper derives the CRB for anchor-free joint position
and orientation estimation for generic antennas, allowing the
inclusion of real antenna calibration or electromagnetic field
(EMF) simulation data. A closed-form expression for the CRB
is obtained by applying wavefield modeling and manifold
separation [11]. The derivation is done directly based on the
received signal waveforms instead of extracted signal metrics.
Like that, all information contained in the signal is taken into
account and the resulting bounds provide fundamental limits
for the position and orientation accuracy. The CRB is then used
to assess the position and orientation estimation performance
of a multi-agent system employing MMAs.

II. CRAMER-RAO BOUND DERIVATION
A. System & Signal Model

The scenario and the basic metrics can be seen in Figure 1.
Accordingly, the range between two agents ¢ and j is given
by
(D
with the speed of light ¢, the signal propagation time ; j,
the Euclidean norm ||.|| and the position of agent i, p; =

[a:i yl} ” The DoA of the signal measured in the body frame
of the agent ¢ is given by

o
0ij =05 —

ctiy = ||lpj — pill,

—xi) =Y, (2

where arctan2(y, x) is the four-quadrant inverse tangent and
1); is the orientation of agent 3.

We assume that the signals are transmitted with a single
omni-directional antenna. On the receive side, we assume a

Y; = arctan2 (y; — ys, x;
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Fig. 1. Geometry of the problem. The illustration shows two agents ¢ and j,
the range in between c7; ;, the DoAs 6; ; and 6; ; and the position p; =
[; y;]T and orientation 1; of agent 1.

generic multi-port antenna system with M ports. In Section III,
we present results for an MMA. The signal received by agent
1 on antenna port m from transmitting agent j is given by

i (n) = awej‘m'f a™(0;;)s(nT —1;5) + wl’;(n), 3)
with real amplitude «; ;, phase offset between transmitter and
receiver ¢; ;, sampled, delayed reference signal s(nT — 7; ;)
with sample index n = 0, ..., N — 1 and sample period T". The
noise w;";(n) is white circular symmetric normal distributed
with variance 2. a™(6; ;) is one coefficient of the antenna
response vector a(f; ;) = [a®(0; ;),...,a™~1(6; ;)]T, which
contains both gain and phase information and is assumed
to be frequency independent. With free-space path loss, the
amplitude is given by

C\/]D‘cx

— 4
dm fe|lp; — pill

Oéi,j =
for carrier frequency f. and transmit power P;,. We assume
an orthogonal frequency-division multiplexing (OFDM) signal

| 2a5=2 )

12 Nse fse (NT —74 5
s(nT — i) S @2 ee e (nT ),

1
Ve 2 _
Nsc= Lf %J
®)
with complex symbol S, ., Ng subcarriers and subcarrier
spacing fs. [12].

In total there are L links between K agents, stored in the
setL={..., (¢,7), ...}. A specific agent i can receive signals
from its neighbors L; = {..., j, ...}. With M antenna ports
per agent and L links, the vector containing all measurements
of the network at time index n is given by

r(n)=[.. 0. m) .. tMm) )" ecME (6)
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Fig. 2. Sampled (crosses) and interpolated (solid lines) MMA power pattern.

The unknowns to be estimated for every agent ¢ are its position
and orientation,

T
&=z v i), (7N
which are then stacked into the vector of agent unknowns
e=1[¢f .. &7 L &k

Accordingly for every link, the amplitude «; ; and phase ¢; ;
are unknown,

" e R3K, (8)

T
Mg = [Cig il 9
thus for all links we get the vector of link unknowns
T T
n=/.. 'I’],(];-J-) } = [ ai,j ¢i,j ] S RzL,
(10)

which we treat as nuisance parameters.

B. Antenna Model

In order to obtain generic bounds for arbitrary antennas and
to take the characteristics of real multi-port antenna systems
into account, we apply an approach called wavefield modeling
and manifold separation [11], [13]. The idea is to decompose
the antenna response vector of the multi-port antenna system

a(t; ;) = G¥(0;,) (11

as the product of a sampling matrix G € CM*V and an
orthonormal basis vector ¥(6; ;) € CU. A suitable basis for
2D is given by the Fourier functions

B(0,) = [zl L o] )
with u = H—%J s L%HT An extension of the basis

to azimuth and elevation is possible, but beyond the scope of
this paper. It is known that |[G],, .| decays superexponentially
for increasing u beyond u = kr, where k is the angular
wavenumber and 7 the radius of the smallest sphere enclosing
the antenna [11]. Therefore a low order U is sufficient to obtain
an accurate representation of the antenna response vector.
With spatial samples from antenna calibration measurements
or EMF simulation, G can be determined by least squares.
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Having obtained the sampling matrix, it can be used to
interpolate the antenna response vector a(6; ;) and determine
the CRB for real antennas in closed form.

In Section III, we show the position and orientation es-
timation bounds for an MMA [3], [4]. It is a single patch
antenna with four ports having different antenna power pat-
terns different phase responses. The sampled and interpolated
power patterns can be seen in Figure 2. Both power and phase
contain position and orientation information which needs to be
considered for the derivation of the fundamental limits.

C. Fisher Information Matrix

We assess the fundamental limits for joint orientation and
position estimation in terms of Fisher information. For circular
symmetric Gaussian noise w;". e the Fisher information matrix
(FIM) can be calculated by [14],

N—-1
I;Re{ OB[r(n)]” OFIr(n )]T} (13)
n=0

g 1T 9[gT 7]
The FIM I € ROE+F2L)x(BE+2L) g gtructured into four
blocks,
2 [I I ]
1=~ " (14)
o? [Igv I,

with Ig € R3>3K I, e R3Kx2L and I,, € R*>2L
The upper-left part I corresponds to the agent unknowns.
Having K agents, it consists of K sub-matrices with dimen-
sion 3x3, given by
M-1N-1
’LJZ;L rnz:() nz;J {
IR

’L ])E]L m=0 n=0
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matrices on the dlagonal 51mp11fy to
M—1N-1
j€L; m=0 n=0
OE[r]; ()" 0By (n)]
R A op! 0
e
BE[T;"J- (n)]* OE[TZZ (n)] ’BE[T?J- (n)] 2
0 Opi 0
M-1
=Bual; ), ),
j€L, m=0
2
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(16)
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where the signal energy E; is given by (23) and the mean
square bandwidth f2 by (25). The off-diagonal blocks are

M—-1N-1
m=0 n=0
A OB ()" OB (n)]
Re op] 0
_ or";(n)* orl";(n) 0
0, opi
B 6(17“(03',1') 2 BQJL
Z e o
’3 8a™ (0:,5) 2 90, 0
90; 5 op;

19)

The upper-right part I¢, relates agent and link unknowns
and consists of 3x2 blocks. For the i-th block row, referring
to agent 7, we have

M—-1

0a™(0; ;)" .
[Teniig) = Y Re {Es%',jaeu]a (0i.5)
m=0 ©J (20)
80i; . 90iy
apT Vi opT ,
-1 _Jaz,]
and accordingly for block-row of agent j
M—1
9a™(0i5)"
[Ienlji) = Y Re {Esam‘ag”]a (0:,5)
m=0 »J (21)

80, 0:,;
—aaF —Jja j ap?
0 0

The lower-right part I,, corresponds to the link unknowns.

Since Re { 6E[g§7@]* AE[r (n)]

Do } =0, it is a diagonal matrix

M—-1
=Y Eola™(0;;) diag {[. 1 o?; ..]}.

m=0

(22)

The partial derivatives of the signal always show up as
conjugate products, see (13). Like that, three different inner
products of the signal or its derivative appear. The first one is
the signal energy of the OFDM signal

E, =

n=0

ls(nT — 7, )|* = 15,1, (23)
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The cross-term

N-1
L0s(nT — 7 5
n=0 b

The third one is related to the mean-square bandwidth [14],
which is a measure of the ranging capability of a signal. For
OFDM signals it is given by [12]

- 1" 0s(nT — 1, ;) > 4xprp2 L& 2e 12
2 E 2 — sc § :
.f ES 87—17] ES q |S¢1| .
n=0 q:L_Nr;IJ
(25)

D. Position and Orientation Error Bound

Having constructed the FIM, the CRB for position and
orientation can be obtained by applying Schur complement,

A 0-2

COVI[E] = CRBIE] = 7 (e I, I 1) @6
where T denotes the Moore-Penrose pseudoinverse and U = V
means U — V is positive semidefinite [15]. As we consider
relative positioning, the FIM is always rank deficient by
three, corresponding to one rotational and two translational
degrees of freedom. Hence the regular inverse does not exist.
Taking the pseudoinverse inherently assumes that an optimal
coordinate system is chosen for relative positioning [15]. Other
sub-optimal choices would lead to an increase of the CRB.

The bound on the covariance of the position estimate for
one agent can be assessed by extracting the corresponding
2x2 submatrix,

[CRB[£]]3i,3
[CRB€]]3i+1,3i

[CRB[¢]]3,3i+1

COVI[p:] = CRB[p;] = [ [CRB[E]]3i41,3i+1
(27)

Applying eigenvalue decomposition,

. X0 r
Cov[p] = R 2| R (28)
0 A3
we can interpret the result as an ellipse with major axis A\;
and minor axis Ay rotated by the rotation matrix R.
The variance of the orientation estimate is lower bounded
by

VAR[();] > CRB[¢);] = [CRB[€]]3i42,3i+2. (29)

III. RESULTS

In this section we present results for an MMA prototype [3],
[4], which is a special type of directive patch antenna with
4 ports, see Figure 2. To obtain omni-directional coverage,
we assume three of these antennas are mounted vertically on
top of each rover with 60° angle in between, see Figure 1.
Only one of the MMAs is active at a time and we assume
a-priori knowledge of the correct antenna for each link. In
practice, this could be done e.g. by a simple decision based
on the received signal power. We assume a bandwidth of
25MHz and N = 1024 subcarriers, resulting in a subcarrier
spacing of fi. = 24.41kHz. To setup a noise level, we
assume —5dBm transmit power, a receiver temperature of
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Fig. 4. Average position error bound of the swarm when moving one agent
to different positions.

290K, an additional noise figure of 8dB and free-space
path loss for f. = 5.2 GHz. Figure 3 shows the 300-sigma
position error bound ellipses and the 300-sigma orientation
error bound sectors for all agents. 300-sigma was chosen to
allow a graphical representation for the given scenario. The
agent in the bottom left, which is more remote and has fewer
connections than the other agents, clearly has the highest
bounds. For the other agents, the bounds are similar.

The derived CRB can not only be used to assess limits for a
given formation, but also for swarm deployment and control.
As an example we move the top-left agent from Figure 1 to
all possible positions and calculate the CRB averaged over
all agents. A receiver sensitivity corresponding to a maximum
distance of 160 m is assumed. The minimum distance between
the agents is 10m to avoid collisions and to ensure far-field
conditions. Figure 4 shows the average position error bound of

the swarm \/ + Zfil tr[CRB[p;]], when the agent is moved
to the corresponding position. The lowest position error bound
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Fig. 6. ToA only and combined ToA+DoA position error bounds for the
scenario shown in Figure 3, scaled in size by a variable factor.

can be achieved if the agent is placed around point [150 70].
Accordingly, Figure 5 shows the average orientation error

bound \/ + Zfil CRB|v;], which does not vary much as long
as the agent is not moved too far away. Apparently, orientation
is less critical than position estimation for this scenario. This
also proves that the chosen setup with three MMASs on each
agent is feasible for joint position and orientation estimation.
Having ToA and DoA information available, both are used
for positioning. Figure 6 compares ToA only with ToA+DoA
for the scenario shown in Figure 3. The plot reveals that DoA
brings a benefit for positioning at short distances. It has to
be stressed that this result is scenario specific. Relative po-
sitioning with DoA information only is not possible, because
the solution always contains a scaling degree of freedom. This
corresponds to a rank decrease of the FIM by one.

IV. CONCLUSION

In this paper we have derived the fundamental limits in
terms of the CRB for joint relative position and orientation
estimation. In the literature, fundamental limits for joint posi-
tion and orientation estimation can be found. However, they
do not cover the relative, i.e. anchor-free, case and are limited
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to ideal antenna arrays like ULA or UCA. In contrast to that,
we employ wavefield modeling and manifold separation to
yield a bound for real multi-port antenna systems by incor-
porating calibration or EMF simulation data. As an example,
we show bounds for a multi-agent system featuring MMAs.
Additionally, we examine where to move an agent such that it
is most beneficial for position and orientation estimation. It is
found that positioning is much more sensitive to the position
of the agent than orientation estimation. Finally we discuss
that DoA information brings a benefit for positioning only at
short distances, whereas ToA is crucial for relative positioning.
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