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Abstract—In this paper we present a new method to select
the most relevant feature trajectories that could be used in video
stabilization algorithms.The main objective is to identify the most
appropriate trajectories of the video that could be used for the
estimation of the camera motion. We use duration and motion
criteria with a global rather than local approach for outlier
rejection, thus avoiding the need for a known motion model. The
performance of the proposed method is evaluated on several real
videos and compared to the state-of-the-art using some intuitive
subjective and objective criteria.

Index Terms—video stabilization, video processing

I. INTRODUCTION

Recent years have seen a marked increase in the production

of amateur videos, notably due to the development of camera-

equipped phones. While the quality of hand-held cameras

has greatly improved, there are still noticeable differences

between the perceptual quality of amateur and professional

video captures. This is mainly due to camera motion during the

video capture. Though some software and hardware solutions

such as optical stabilizers [1], embedded in video cameras in

order to deal with annoying jitters and other annoying camera

motion effects have been proposed, video stabilization is still

a very challenging problem [2]. These involuntary movements

are source of visual discomfort for viewers and may affect the

performance of some video processing and analysis tasks [3].

Digital video stabilization is therefore needed to smooth out

these artifacts in order to improve the video quality.

Video stabilization operates in several interdependent steps.

First, the video motion field is estimated using a frame-to-

frame matching process. This estimation can be performed by

tracking a set of salient features or points of interest in the

successive frames. Several feature points trackers have been

proposed in the literature. The most popular are SIFT, SURF or

KLT [4]. The position of a given feature point throughout the

video forms a feature trajectory, that represents the movement

of an object in the video. Secondly, the original moving camera

path is computed by using the estimated two-dimensional flow

field. Usually a 2D or 3D motion model is used and the camera

parameters are computed by solving linear equations. The

camera path is then corrected and smoothed to obtain more

coherent and smooth movement. Finally, a video restoration

process based on the estimated camera path is used.

The estimation of the 2D or 3D camera parameters from

feature trajectories is a tricky process since not all move-

ments present in the video give information on the camera

motion. While static objects are only affected by camera-

induced movements, other objects undergo displacements that

are caused by both the camera motion and the movements

of the object in the scene. These moving objects need to be

separated from the others and removed in order to compute

the correct camera path. The most common approach to handle

this issue is to use the RANSAC algorithm [5] which is based

on a parametric motion model between two successive frames

(e.g. affine transform, homography...) [6]–[8]. The feature

points that do not fit the model are considered as outliers and

removed. In RANSAC, outliers are detected by thresholding

the projection error. The threshold can be adapted to the

considered frames [9], or fixed using other approaches such

as the number of false alarms or negative log-likelihood [10].

Other considerations such as temporal or spatial constraint

have been used to improve the effectiveness of RANSAC [6],

[14]. By assuming low camera movements, simple strategies

can be implemented by removing feature points with a velocity

above a given threshold [11]. Alternatively, neighbourhood

information could be exploited to remove undesirable moving

objects under the assumption of locally smooth motion vector

field. The dense optical flow assumption could be then used

to remove spurious movements by thresholding the motion

gradient [12]. Delaunay triangulation can be used to establish

neighbourhood constraints, removing points whose motion

differs from those of points lying along an edge of the

triangulation [13].

While all these strategies are efficient on simple cases

where the vast majority of feature points belong to static

objects or background, they provide poor results when the

global assumptions they are based on are not valid (camera

movements that fit a parametric model, low amplitude and

spatially coherent movements). In particular, large objects

moving in the foreground or scenes with many moving objects

can prove difficult to handle. Furthermore, all these methods

reject feature points based on the observation of two successive

frames. They do not consider the feature trajectory during its

whole lifetime. For instance, the same feature point may be

considered as an inlier for certain pair of frames and as an

outlier elsewhere. As such, the movement analysis provided
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by classic approaches is only local and is not adequate to

really identify which feature trajectories are relevant for the

camera movement estimation.

In this article, we propose a novel approach to assess and

select the best feature trajectories to use in the camera motion

estimation for video stabilization. Unlike standard approaches

used for the selection of feature trajectories, we analyse the

movement of the feature trajectories through all frames and

compute a global weight by considering multiple criteria such

as movement and duration. Section II presents the proposed

method for feature trajectories selection. Section III is devoted

to the performance evaluation, along with results on several

videos and a comparison with the state-of-the-art. The last

section provides some concluding remarks and some open

problems and perspectives.

II. FEATURE TRAJECTORIES SELECTION

First, let us consider a video corrupted by camera move-

ments, from which feature trajectories are extracted using the

KLT tracker [4]. This tracker detects interest points and tracks

them throughout the video to form feature trajectories. Let

zi[t] = (xi[t], yi[t])
† denote the position of the ith feature

point at frame t. The instantaneous velocity of this feature

point is denoted żi[t] = zi[t + 1] − zi[t]. Since trajectory i

might not last for the whole video duration, let us define tstarti

and tendi , as the starting time and end time, respectively, of

the ith trajectory.

The feature trajectories selection strategy proposed in this

article is based on the following steps:

1) First, we analyse each feature trajectory on a local

time-window, in order to account for its duration and

movement properties. More specifically, we define two

local weights wd
i [t] and wm

i [t] within the range [0, 1]
that rank trajectory i according to its duration and

its adequacy with the movements observed on a time-

window centred on frame t.

2) Then, we combine all local weights wd
i [t], w

m
i [t] in order

to form a global trajectory weight wi that accounts for

the phenomenon observed during the whole duration of

the trajectory.

3) We select the feature trajectories with the largest weights

wi to estimate the camera motion parameters.

A. Duration characteristics of features trajectories

Feature trajectories that span too few frames are likely to

be unreliable. In most cases, they correspond to feature points

that are not salient enough or not detected by the KLT tracker,

or to moving objects that do not remain in the scene for a long

time. This is a well-known problem usually handled by using

ad hoc techniques such as thresholding in order to remove

short trajectories and keeping only the longest ones.

Here, rather than using a hard threshold as done by Liu

& al [14], we use a time window of length 2Nw + 1 = 31
centred on frame t, and to compute a duration weight wd

i [t]

Fig. 1. Example on the close person video (frame 100). All trajectories
belonging to the time-window of interest are projected in the (ux,uy) plane.
The majority of the contributions aggregate around the red point (mode of the
2D histogram). When selecting only feature points close to this mode (green
points), we retrieve feature points from the background that are only corrupted
by camera motion. On the contrary feature points far from the mode (blue
points) correspond either to the moving woman or to spurious feature points.

that accounts for the local duration of trajectory i. This weight

is defined as:

wd
i [t] =

min(tendi , t+Nw)−max(tstarti , t−Nw) + 1

2Nw + 1
. (1)

This weight is within the range [0, 1] and corresponds to the

percentage of frames within the temporal window of interest

for which trajectory i is defined. It is a local score that

provides a temporal assessment of the reliability of the feature

trajectory.

B. Motion characteristics of features trajectories

A second criterion related to the motion characteristics

of the features trajectories is introduced and used in order

to discriminate between static and moving objects in the

distorted video. However, without knowledge of the scene

characteristics, deriving the most appropriate motion model

corresponding to the video is an ill-posed problem. Therefore,

instead of using RANSAC [5] or its variants [10], which

are based on parametric and geometric models, we propose

to identify the dominant movement in the video without

assuming any motion model, by using a projection in a low-

rank subspace.
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We consider a time window of length 2Nw+1 = 31 centred

on frame t, and form the local velocity matrix Ż[t] which

contains all instantaneous velocities {żi[τ ]}
t+Nw

τ=t−Nw
belonging

to trajectories that overlap with the time-window of interest.

The temporal window is small since the approximation of

motion in a low-rank subspace does not hold over long

periods. This matrix is then analyzed with a Singular Value

Decomposition (SVD) algorithm that handles missing values

through an iterative process [15] :

Ż[t] = UΣV
† (2)

where U and V are unitary matrices and Σ is a diagonal

matrix.

This decomposition has been used to model the camera

motion using the right-singular vectors [14]. We instead use

it to analyse the components which influence the feature

trajectories, using the left-singular vectors.The largest singular

value λ1 in Σ captures the information corresponding to the

dominant movement that is localized within the time-window

of interest. The first left-singular vector u1 in U corresponds to

the contribution of each trajectory to this dominant movement.

Intuitively, all feature trajectories belonging to static objects or

background, should have similar contributions to this dominant

movement. On the contrary, moving objects or pixels should

have different contributions and thus be identifiable. First, u1

is decomposed by taking every other line and forming u
x and

u
y , with u

x containing the parameters describing the parame-

ters of the horizontal movements and u
y the parameters of the

vertical movements. Figure 1 illustrates this process: feature

points affected only by camera motion tend to aggregate in

the (uy,ux) plane. By detecting the mode (ux
∗ , u

y
∗) of the

2D-histogram (16× 16) of these contributions, we can define

a movement weight wm
i [t] that accounts for the distance (in

the (uy,ux) plane) of trajectory i to the detected mode:

wm
i [t] = e−γ[(ux

i −ux
∗
)2+(uy

i
−uy

∗
)2] (3)

where γ = 1000 is a scale parameter. This weight is comprised

between 0 and 1 and can be interpreted as an agreement score

according to the dominant movement. It is a local score that

provides a non-parametric assessment of the adequacy of the

movement of the feature point.

C. Combination process

Both local weights wd
i [t] and wm

i [t] provide complementary

information on the relevance of the feature trajectories. For

instance, long trajectories may correspond to moving objects

and have large duration weights, but are likely to have small

movement weights since their movements would not fit the

dominant motions seen in the video. It is therefore intuitive to

combine both scores in order to take into account both criteria

in the selection process.

Although local weights can provide insights on the rel-

evance of the trajectories, there are not sufficient to select

the feature trajectories. For example, a moving object can be

static or follow the camera motion through a few frames and

then return to its original own movement. In this case, the

local movement weight increases and then decreases in the

video, despite the fact that the trajectory is not suitable for

robust camera parameter estimation. Note that all common

methods for feature trajectory selection (such as RANSAC)

have the same drawbacks. Indeed, since they consider only

two successive frames, they might consider as inliers feature

points that belong to moving objects but are static in the few

frames of interest.

In order to address these two issues, we propose to first

combine the two local weights, and then average the obtained

local weight on the whole duration of the trajectory. This leads

to the local weight defined below.

wi =
1

tendi − tstarti + 1

tend
i
∑

t=tstart
i

wd
i [t]× wm

i [t]. (4)

This weight lies in the range [0, 1]. It is worth to point out

that trajectories with large weights wi have sufficient duration

and their movements are consistently in accordance to the

dominant movements present in the video. This means that

it is unlikely that these trajectories belong to non detected

KLT feature points, moving objects or artefacts.

This weighting method can be used in several strategies

for feature trajectories selection. In this work, we remove all

trajectories whose weight wi is lower than a threshold λ. This

threshold is set such as there is always a minimum number

Ns of trajectories present in each frame. We tested different

values using an objective criterion based on resolution loss

(detailed in section III) and chose the value Ns = 40 which

provided the best results on the 15 videos of the dataset. Since

few trajectories are needed, rejecting many viable trajectories

is preferable to accepting a single outlier, however retaining

too few trajectories seems to result in over-fitting the motion

model to a small area containing the retained features.

III. RESULTS AND DISCUSSION

The selection process introduced in this article can be seen

as a pre-processing step that can be used in any video stabi-

lization method that relies on feature trajectories. This step can

be evaluated independently by visual inspection of the selected

trajectories or as part of a video stabilization process. Figure 2

presents the selected trajectories for the video close person. In

this video, the woman is moving in front of a static background

that is only corrupted by camera movements. The selection

process successfully extracts Ns = 40 trajectories belonging

to the static background and all those belonging to the moving

foreground are removed. Additional results on five different

videos can be found on our webpage1: in all tested videos, the

trajectories belonging to moving objects are correctly rejected

by our method.

In the following, we investigate the relevance and the impact

of the selection step within the video stabilization process.

To that end, we propose to plug our pre-processing step into

a standard video stabilization method, called Local Linear

1http://www-l2ti.univ-paris13.fr/∼guilly/
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Fig. 2. Example on the close person video (frame 100). On the left frame are
all trajectories detected by the KLT tracker, and on the right are the selected
trajectories. All trajectories corresponding to the moving woman have been
removed.

Matrix-Based smoothing (LLMB) [16]. First, we estimate the

2D affine model Ht,t+1 between two successive frames t and

t+ 1

Ht,t+1 =





1 + a11 a12 Tx

a21 1 + a22 Ty

0 0 1



 . (5)

These transformations are computed by solving a least-square

problem from the feature trajectories retained by our trajectory

selection algorithm. Then, these transformations are accumu-

lated and smoothed using a Gaussian filter (with σ = 50).

We denote the accumulated transforms H̄t and the smoothed

transforms H̃t. The difference between the accumulated and

smoothed transformations defines an inverse transform Ĥ−1
t =

(H̃t − H̄t + I3)
−1 that can be applied to frame t in order to

diminish the camera movements. The resulting stabilized video

is finally cropped to avoid undefined regions. The flowchart

of our stabilization framework is presented on Figure 3.

The proposed stabilization framework is compared to a

RANSAC based video stabilization method and the Youtube

stabilizer [17]. While our method selects reliable trajectories

to compute the 2D transforms, the RANSAC based approach

considers all trajectories and selects the motion parameters that

results in the highest number of trajectories being considered

inliers. The 2D affinity transforms are then processed with

the same LLMB stabilization method [16]. In the case of the

Youtube stabilizer, the video stabilization is performed using

cinematographic criteria after removing the local outliers [17].

These methods have been tested on fifteen videos presenting

different challenges for video stabilization, such as large

moving object or depth differences [14]. Some representative

exemples of these results is available on our webpage1. Figure

4 presents a screen-shot of the results obtained by the three

methods for the 14 object video which depicts a train leaving

a station. Interestingly, the motion of the train is interpreted

by both the RANSAC algorithm and the Youtube stabilizer as

being part of the camera movement. The RANSAC algorithm

seeks a compromise between the parameters of the background

movement and the train motion, causing distortions in the

video, that are outlined in green in the figure 2. The Youtube

stabilizer avoids spatial distortions but causes artificial cam-

era motion in an attempt to stabilize the train motion in

short bursts before re-centring on the original camera path.

These temporal distortions are visible on the video but are

unfortunately impossible to display on still image frames.

KLT tracker

Duration criterion

Motion criterion

Combination

Least-square A

C

Ou

RANSAC

Input videos

Fig. 3. Flowchart of the stabilization framework. The selection process
introduced in this article is displayed in gray.

Fig. 4. Example on the 14 object video (frame 68). On the upper left is the
original video, on the upper right the result of the RANSAC algorithm, on
the lower left the results of the Youtube stabilizer and on the lower right the
result of our algorithm. Cropped areas are displayed in black for RANSAC
and our method. Youtube stabilizer automatically resizes the video.

We recommend the readers to refer to our website for better

resolution and display. Note that in both cases the attempt

to correct the movements of an object causes the RANSAC

and Youtube algorithm to stray further than necessary from

the original camera path, causing a loss in resolution. This

loss is easily visible for RANSAC and our method since

cropped areas are visible in black, but it can also be seen

in the Youtube result. Note how the door on the left has been

cropped compared to the other exemples. Results on other

videos show similar effects: our method allows robustness

in the presence of large moving objects for which both the

RANSAC algorithm and the Youtube video editor fail.
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TABLE I
MEAN PERCENTAGE OF UNDEFINED AREA BEFORE CROPPING

Video RANSAC Trajectory selection

3 crowd 8.69 8.09

4 object 4.17 3.89

22 driving 3.72 1.15

8 object 10.75 3.83

14 object 3.90 1.43

close person 6.55 6.57
10 object 3.72 3.77
12 object 0.80 0.43

5 driving 3.14 3.33
17 driving 9.74 6.86

8 driving 2.82 2.36

15 object 4.34 4.65
9 object 7.42 3.32

20 driving 2.99 2.79

10 driving 4.53 2.62

average 5.15 3.67

Objective evaluation of stabilization methods is a challeng-

ing task, especially for real videos, for which the ground

truth camera path is not available. Some authors [16] have

recently introduced an unsupervised and objective criterion

for the evaluation of video stabilization, which is based on

resolution loss. The idea is to compare the percentage of

empty regions obtained by several methods with the exact

same level of stabilization (σ value). Indeed, different degrees

of stabilization naturally lead to differences in resolution loss.

However by comparing this percentage on videos treated

with the same stabilization method, we can judge whether

our trajectory selection helps in limiting the resolution loss.

Intuitively, this criterion illustrates how close the estimated

transformations using our trajectory selection are to the true

camera movement compared to the transformations computed

using RANSAC. The results in terms of mean percentage

of undefined area before cropping, obtained on 15 videos

when using the RANSAC based method and the proposed

scheme are summarized in Table I. Unfortunately, the results

are not available for Youtube stabilizer as it uses different

stabilization and cropping strategies. Table I shows that using

our trajectory selection reduces the average undefined area

(-1.5% in average), which leads to better resolution after

cropping. In particular, scenes containing large moving objects

greatly benefit from our method, making it possible to obtain a

strong stabilization while keeping acceptable video resolution.

IV. CONCLUSION

In this article, we presented a feature trajectories selection

method for video stabilization. Through this study, it has been

shown that by taking into account duration and motion criteria,

it was possible to select more reliable feature trajectories to be

used for video stabilization purpose. The obtained results have

been evaluated subjectively and objectively using some intu-

itive criteria. The proposed method shows smaller percentage

of undefined areas using similar stabilization methods. Future

perspectives include investigating the tuning of the different

parameters, making use of the spatio-temporal distribution of

feature points to refine the selection process and the impact of

different motion models on the performance of the proposed

method.
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