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Abstract—Time series forecasting has an important role in
many real applications in meteorology and environment to
understand phenomena as climate change and to adapt mon-
itoring strategy. This paper aims first to build a framework
for forecasting meteorological univariate time series and then
to carry out a performance comparison of different univariate
models for forecasting task. Six algorithms are discussed: Single
exponential smoothing (SES), Seasonal-naive (Snaive), Seasonal-
ARIMA (SARIMA), Feed-Forward Neural Network (FFNN),
Dynamic Time Warping-based Imputation (DTWBI), Bayesian
Structural Time Series (BSTS). Four performance measures and
various meteorological time series are used to determine a more
customized method for forecasting. Through experiments results,
FFNN method is well adapted to forecast meteorological univari-
ate time series with seasonality and no trend in consideration of
accuracy indices and DTWBI is more suitable as considering the
shape and dynamics of forecast values.

Keywords—Univariate time series forecasting; similarity mea-
sure; SARIMA; FFNN; BSTS; DTW

I. INTRODUCTION

Time series forecasting is a matter of great importance in
numerous domains [1], [2]. In particular, forecasting hydro-
meteorological data plays a key step to better understand
climate change, environmental change, and then to adapt mon-
itoring strategy, to deploy preventive or corrective actions. This
means to define how past events affect future events. But this
task is a remaining challenge because hydro-meteorological
data are impacted by diverse phenomena and factors from the
environment.

Classical methods for forecasting hydro-meteorological time
series were investigated to address the issue of linear models
[2] such as linear regression, Exponential Smoothing (ES)
or model fitting approaches based on moving average. Au-
toregressive Integrated Moving Average (ARIMA) is one of
the most commonly model for this task [3]–[5]. Mahmud
et al. [6] investigated seasonal ARIMA model to monthly
predict rainfall for 12 future months considering thirty rainfall
stations in Bangladesh. Nury et al. [7] employed SARIMA to
forecast future values of temperatures in the Sylhet Division of
Bangladesh. The authors showed that the SARIMA is a power-
ful model for short-term forecasting of the two meteorological
variables max. and min. temperature. In [8], Li et al. proposed
Hadoop-based ARIMA algorithm to forecast weather.

These methods are well adapted to predict generic trends.
However, they are not able (i) to determine nonlinear features

in data and (ii) to predict quick change inside the process.
In the three past decades, numerous approaches have been
proposed to improve accuracy and efficiency of time series
forecasting, especially using nonlinear models. Cheng et al.
[9] pointed out that nonlinear models outperform linear ones
for time series forecasting in many applications, such as stock
prices [1] and climatology [10].

Artificial Neural Networks (ANN) have become a useful
approach to model nonlinear processes such as forecasting
rainfall [11], [12], or predicting sea level [13]. In [14], Hung
et al. investigated feed-forward neural network model and
compared it with a simple persistent method for hourly rainfall
forecasting (from 75 rain gauge stations) in Bangkok, Thai-
land. The results showed that FFNN model illustrated better
ability to predict rainfall. Chattopadhyay and Chattopadhya
[15] performed a comparison of traditional statistical autore-
gressive models and autoregressive NN model for univariate
prediction of rainfall time series. The results of these studies
present the improved performance of NN model when com-
paring it with the traditional statistical approaches.

Dynamic Time Warping (DTW) [16] is an effective method
for measuring similarity between two linear/nonlinear time
series. This method is successfully applied in pattern recog-
nition [17], [18], in imputation [19]. For the forecasting task,
there are few studies using DTW to predict future values. In
[20] Tsinaslanidis and Kugiumtzis used perceptually important
points and DTW for stock market forecasting.

Compared to other methods, only few research has been
devoted to predict time series using Bayesian network-based,
although Aguilera et al. showed the capability of Bayesian
networks in environmental modeling in [21].

Thus this paper does not propose a novel forecasting
method. However we emphasize on comparing the perfor-
mances of different univariate approaches by building a frame-
work for forecasting hydro-meteorological univariate time
series. Five time series data are applied to the six models we
choose for anticipating future values including SES, Snaive,
SARIMA, FFNN, DTWBI, and BSTS. This allows to suggest
the most suitable method, among the above-mentioned meth-
ods, for predicting hydro-meteorological univariate time series
ensuring that results are reliable and high quality.

In addition, for univariate forecasting methods, we must
only rely on the available values of this unique variable
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to estimate future values, without other outside explanatory
variables [22]. And, Smith and Agrawal [23] pointed out that
"when attempting to forecast univariate time series data, it
is generally accepted that parsimonious model techniques are
followed".

This paper is organized as follows. Section 2 focuses on
univariate forecasting methods. Next, Section 3 introduces our
experiments protocol. Results and discussion for forecasting
meteorological univariate time series are provided in Section
4. Finally, conclusions are drawn and future work is presented.

II. TIME SERIES FORECASTING METHODS

In this part, several adapted methods for forecasting mete-
orological univariate time series are mentioned and then will
be deployed.
• SES - Simple Exponential Smoothing: ES methods, in-

cluding a number of ad hoc techniques, used for ex-
trapolating different types of univariate time series. The
new forecast at time t+ 1 is the exponentially weighted
average of all t past observations: y1, y2, . . . , yt [2].

yt+1|t =
t∑

n=0

α(1− α)nyt−n (1)

where 0 ≤ α ≤ 1
• Snaive - Seasonal-naive: sets all the forecast values to be

the value of the last observation and takes into account
the seasonal period as eq.2. Hence, this method considers
that the most current observed value is the only important
one and all the previous observations do not provide
information to estimate future values.

yt+h = yt+h−km (2)

where m is a seasonal period, k = 1 + (h− 1)/m, h is
a number of periods for forecasting.

• SARIMA - Seasonal-ARIMA: the forecasted values of
a stationary time series can be estimated by an additive
linear function composed of p past observations (autore-
gressive) and q random errors (moving average) as eq.3,
denoted as ARIMA(p, d, q) [2], and d is the differencing
number used to make a series y to be stationary.

yt =

p∑
n=1

αn × yt−n + εt +

q∑
n=1

βn × εt−n (3)

Seasonal ARIMA model is developed from ARIMA by
taking into account seasonal factors. SARIMA is labeled
as SARIMA(p, d, q)(P,D,Q)s, where upper-cases are
counterpart of ARIMA model for the seasonal model and
s is number of periods per season.

• BSTS - Bayesian Structural Time Series: This model
applies Markov Chain Monte Carlo (MCMC) to sample
the posterior distribution of a Bayesian structural time
series model. The model involves 3 major steps:
Kalman filter: This step consists in decomposing a time
series. Various state variables such as trend, seasonality,
regression can be added in this step.

Spike-and-slab: This step selects the most important
regression predictors.
Bayesian model averaging: This step combines the results
and calculates prediction values.

• DTWBI: In a previous study [19], we proposed DTWBI
approach for completing missing values. Here, we con-
sider forecasting values as missing data, and then we
apply DTWBI method to compute these future values.
Forecasting process is based on past values. This is
fully compatible with DTWBI approach that fills missing
values according to the recorded data.
The approach consists in finding the most similar sub-
sequence Qs to a query Q (the sub-sequence before
the predicted position) by sliding windows based on the
combination of shape-feature extraction algorithm [24]
and DTW. This allows some distortions both in the
temporal and value axis. Once the most similar window
is identified, the following sub-sequence Qfs of the Qs
is considered as the forecast values. The dynamics and
the shape of data before the forecast values are key-point
of this technique (see [19]).

• FFNN - Feed-forward neural network: Artificial Neural
Network is proposed from inspiring the interconnection
neurons of the human. FFNN maps the set of inputs to the
set of outputs (both data inputs and outputs are digital).
FFNN allows to automatically extract global features
before the last decision step (output layer) considering
only one hidden layer. A FFNN with no hidden layers
is also called linear perceptron: its inputs are directly
mapped to the outputs unit via the weighted connections.

III. EXPERIMENTS PROTOCOL

We have conducted a set of experiments on five meteo-
rological time series using six different univariate models to
evaluate their forecasting performance. R language is used
to compute all experiments. We utilize the latest R-packages
of forecast [25] (for FFNN, Ses and Snaive), astsa [26] for
SARIMA, bsts [27] (for BSTS). For DTWBI, we develop
ourselves (upon request). For SARIMA, auto.arima() [25]
is employed to optimize the parameters p, d, q, P,D,Q. For
FFNN, we use the default parameters: input nodes are the
number of seasonal lags applied to seasonally adjusted data,
and number of nodes in the hidden layer is half the number
of input nodes. And for BSTS, we choose niter = 50 with
specified seasonality component for each forecasting rate.

A. Data presentation

In this section, we describe the data used for the study.
Five hydro-meteorological time series are used for evaluating
the performance of forecasting methods (table I). These five
datasets were collected at three meteorological stations in
Vietnam. They have different sampling frequency and time
measurement duration (short or long period). In order to
obtain useful information from the datasets and to make the
datasets easily exploitable, we analyzed these series. Table
I summarizes their characteristics. All the five datasets have
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a seasonality component (i.e. an annual cycle), without any
linear trend.

TABLE I
CHARACTERISTICS OF TIME SERIES

N0 Dataset name Period # Samples Frequency

1 Ba Tri humidity 2003-2007 7,304 6 hours
2 Ba Tri air temperature 2003-2007 7,304 6 hours
3 Cua Ong air temperature 1973-1999 9859 daily
4 Phu Lien humidity 1961-2015 692 monthly
5 Phu Lien air temperature 1961-2014 684 monthly

B. Experiments process

To assess the capacity of forecasting algorithms, we used a
technique including three steps. In the first step, data segments
are deleted from each time series with different size of
consecutive data. In the second step, all forecasting algorithm
are applied as mentioned above to estimate the forecast values.
Finally, after forecasting data, four performance indicators are
computed between the predicted segment and the deleted true
values.

In this study, 5 forecasting data levels are considered on
5 datasets. For Phu Lien datasets with monthly sampling
frequency, we predict 6, 12, 18, 24 and 30 future months.
For the infra daily series, the forecasting size is ranged from
0.5% 0.75%, 1%, 1.25% and 1.5% of the dataset size. For each
forecasting level, all the algorithms are conducted 5 times by
back-warding the predicted position of each repetition with a
size of forecasting. We then run 25 iterations for each dataset.

C. Performance indicator

After the prediction of future values, we compared the
performance of six different forecasting methods based on four
metrics described as follows:

1) Similarity define the percentage of similar values be-
tween the predicted values y and the actual values x. It
is calculated by:

Sim(y, x) =
1

T

T∑
i=1

1

1 + |yi−xi|
max(x)−min(x)

(4)

Where T is the number of forecast values. A higher
similarity (Sim value ∈ [0, 1]) highlights a better ability
method for the forecasting task.

2) NMAE: The Normalized Mean Absolute Error between
the predicted values y and the actual ones x is computed
as:

NMAE(y, x) =
1

T

T∑
i=1

|yi − xi|
Vmax − Vmin

(5)

Where Vmax, Vmin are the maximum and the minimum
values of input time series (time series used for forecast-
ing). A lower NMAE value means better performance
method for the prediction task.

3) RMSE: The Root Mean Square Error is defined as the
average squared difference between the forecast values

y and the respective true values x. This indicator is
very useful for measuring overall precision or accuracy.
In general, the most effective method would have the
lowest RMSE.

RMSE(y, x) =

√√√√ 1

T

T∑
i=1

(yi − xi)2 (6)

4) FB (Fractional Bias): This parameter determines whether
the predicted values are overestimated or underestimated
relatively to those observed. A model is considered as
perfect when its FB tends to zero, and as acceptable
when −0.3 ≤ FB ≤ 0.3

FB(y, x) = 2 ∗ mean(y)−mean(x)
mean(y) + mean(x)

(7)

IV. RESULTS AND DISCUSSION

Table II presents average results of different forecasting
algorithms on 5 univariate time series for the 4 indicators.
The best results for each forecasting rate are bold highlighted.

These results show that FFNN method demonstrates better
performance for forecasting future data on Phu Lien tempera-
ture, Ba Tri humidity and Ba Tri temperature series: the highest
similarity, the lowest NMAE and RMSE at every forecasting
levels. The highest similarity (close to 1 with Sim ∈ [0, 1]),
lowest NMAE and RMSE highlight an improved capability
for the forecasting task. The results illustrate that the forecast
values generated from the FFNN method are close to the real
values. However, when considering the FB index, the indicator
presents the bias of estimated values with real values, the
FFNN only yields the best results at some levels.

On Phu Lien temperature data, following the FFNN ap-
proach is DTWBI as predicting values from 6 to 30 months
on the first 3 indices (Similarity, RMSE and NMAE). For FB
index, DTWBI outperformed other methods for larger sizes
of forecasting values, from 18 to 30 months. The third one is
BSTS on this dataset for all indicators.

As reported in table II, in contrast to the three above
datasets, BSTS method shows the best predictability on Sim,
RMSE and NMAE measurements for all ratios on Phu Lien
humidity. The second rank is SARIMA when considering the
three indicators (excluding 2nd level for Sim index).

In addition, all five series have a seasonality component, so
we choose SARIMA to make a prediction. Although ARIMA
is a benchmark method for the forecasting task and for each
time series we use R function auto.arima() [25] to optimize
parameters but with these time series this model does not
illustrate its ability.

Looking at Cua Ong temperature dataset (table II), FFNN
continues to demonstrate its predictability for meteorological
univariate time series at the first two forecast levels (0.5% and
0.75%). But at higher ratios from level 3 to level 5, DTWBI
proves its predictability: the largest value for Similarity, and
the smallest value considering error and bias indices.

Ses and Snaive methods were proposed for forecasting
data with seasonality or no trend. When considering accuracy
indices, they yield quite good results (table II).
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In this study, we also compare the visualization performance
of forecasting values generated from different methods.
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Fig. 1. True values and forecast values generated from different univariate
methods on Phu Lien humidity series (forecast size of 18 months)

Figure 1 presents the shape of forecast values yielded by
different methods on the Phu Lien humidity series. From this
figure, it is clear that SES and Snaive methods do not produce
a similar shape as the shape of true values. When comparing
the quantitative indicators, DTWBI is only second or third
rank, but when considering the shape of forecasting values,
DTWBI is better than other methods. The dynamics and the
form of predicted values produced by the DTWBI method are
very similar to the form of true values.

In this paper, Cross-Correlation (CC) coefficients between
the query and each sliding window (as defined in DTWBI
method) are also calculated, and the maximum coefficient
is computed. CC indicates the similarity of two series. For
forecasting task, this coefficient demonstrates how past values
affect future ones. High CC means that predicted values are
close to past values. In table III, we see that CC coefficients are
very high only for Phu Lien temperature series, (approximate
1). These CC values make it possible to explain why the
predicted values (generated from DTWBI, FFNN, SARIMA
and BSTS) and the actual values are nearly identical: similarity
values are very high, error and bias indexes are very low.

From the above results and analysis, we suggest to use
DTWBI approach for forecasting meteorological univariate
time series when considering the shape of predicted values
and to apply FFNN when regarding the quantitative accuracy.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a framework for meteorological uni-
variate time series forecasting. Quantitative performance of
different methods are compared on 5 various datasets using
4 quantitative indicators (similarity, NMAE, RMSE and FB).
The visual performance of these methods is also evaluated.

The obtained results clearly demonstrate that FFNN yielded
improved performance when considering accuracy of forecast
values and DTWBI is more appropriate when regarding the
shape and dynamics of predicted values for forecasting mete-
orological univariate time series. These results are original for
hydro-meteorological univariate time series. The present work
will allow to compare different type of univariate time series
and to forecast multivariate time series in the future.
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TABLE II
PERFORMANCE INDEXES OF VARIOUS FORECASTING ALGORITHMS ON 5 DATASETS (BEST RESULTS IN BOLD)

Metrhod Phu Lien temperature Phu Lien humidity Ba Tri humidity Ba Tri temperature

Size Sim NMAE RMSE FB Sim NMAE RMSE FB Sim NMAE RMSE FB Sim NMAE RMSE FB

DTWBI 6 0.922 0.06 1.29 -0.03 0.76 0.12 5.5 0 0.85 0.13 11.75 0.02 0.83 0.08 23.75 -0.01
FFNN 0.93 0.05 1.18 -0.02 0.75 0.11 4.97 0.02 0.89 0.08 6.46 0 0.9 0.04 12.19 0.01
SARIMA 0.88 0.09 1.78 -0.03 0.77 0.11 4.71 0.02 0.87 0.09 8.03 0.01 0.79 0.09 25.76 0.04
BSTS 0.921 0.06 1.18 0 0.8 0.08 3.51 0.01 0.81 0.16 13.14 -0.01 0.77 0.11 35.23 0
ses 0.76 0.26 6.2 -0.01 0.78 0.11 4.84 0.02 0.83 0.14 11.75 0.02 0.81 0.08 25.21 0.01
snaive 0.76 0.26 6.2 -0.01 0.69 0.17 6.99 0.06 0.78 0.18 14.55 -0.03 0.77 0.11 32.35 0.02

DTWBI 12 0.925 0.07 1.63 -0.02 0.8 0.12 5.86 -0.02 0.84 0.14 12.71 0.02 0.82 0.08 27.09 0.03
FFNN 0.94 0.05 1.24 0 0.83 0.1 4.5 0.01 0.9 0.08 6.62 0 0.86 0.06 17.59 0.02
SARIMA 0.92 0.07 1.63 -0.01 0.82 0.1 4.71 0.01 0.87 0.11 8.81 0.01 0.81 0.08 24.37 0.03
BSTS 0.92 0.07 1.48 0 0.86 0.08 3.64 0 0.78 0.21 17.1 0.05 0.8 0.09 28.5 0.01
ses 0.71 0.35 7.23 -0.26 0.83 0.1 4.73 0.01 0.83 0.14 11.9 0.01 0.82 0.08 25.29 0.01
snaive 0.71 0.35 7.23 -0.26 0.8 0.11 5.48 0.02 0.8 0.19 15.56 0 0.78 0.11 34.51 0.01

DTWBI 18 0.93 0.06 1.49 0 0.83 0.11 5.48 -0.02 0.84 0.14 13.1 0.03 0.84 0.08 25.46 0.03
FFNN 0.94 0.06 1.3 0 0.83 0.1 4.67 -0.03 0.88 0.1 8.59 -0.01 0.89 0.05 15.95 0
SARIMA 0.92 0.08 1.82 -0.01 0.84 0.1 4.67 0 0.87 0.11 9.55 0 0.83 0.08 24.27 0.02
BSTS 0.93 0.07 1.54 0.02 0.88 0.07 3.41 -0.01 0.75 0.25 18.85 -0.13 0.72 0.17 52.62 -0.03
ses 0.76 0.31 7.18 0.01 0.84 0.1 4.81 -0.01 0.83 0.15 12.81 0 0.84 0.07 23.46 0
snaive 0.76 0.31 7.18 0.01 0.8 0.14 6.15 0.03 0.75 0.25 19.56 -0.06 0.78 0.11 33.82 0.01

DTWBI 24 0.94 0.06 1.45 0 0.83 0.12 5.8 -0.03 0.85 0.15 13.87 -0.01 0.84 0.08 24.75 0.03
FFNN 0.94 0.05 1.24 -0.01 0.85 0.11 5.08 0.01 0.89 0.09 8.61 0 0.87 0.06 18.49 0
SARIMA 0.91 0.08 1.8 -0.01 0.85 0.1 4.95 0.01 0.86 0.12 10.36 0 0.84 0.08 23.64 0.02
BSTS 0.92 0.08 1.67 0.01 0.87 0.09 3.85 -0.01 0.76 0.25 20.42 -0.06 0.81 0.1 30.91 -0.02
ses 0.74 0.31 6.55 -0.22 0.84 0.11 5.03 0.01 0.83 0.16 13.26 0 0.84 0.07 23.71 0.01
snaive 0.74 0.31 6.55 -0.22 0.84 0.11 5.15 0.02 0.79 0.22 19.05 -0.04 0.81 0.1 31.73 -0.01

DTWBI 30 0.93 0.07 1.6 0 0.84 0.11 5.34 -0.01 0.89 0.11 10.46 0.01 0.86 0.07 21.9 0.03
FFNN 0.94 0.05 1.27 -0.01 0.84 0.12 5.69 0.01 0.91 0.08 7.91 -0.01 0.89 0.05 16.52 0.01
SARIMA 0.91 0.08 1.8 -0.01 0.85 0.11 5.08 0.01 0.86 0.13 10.84 0 0.84 0.08 24.06 0.02
BSTS 0.92 0.07 1.66 0.01 0.86 0.1 4.62 0.02 0.77 0.24 19.56 -0.06 0.77 0.13 40.17 0.01
ses 0.77 0.29 6.49 0.04 0.85 0.11 5.28 0.01 0.83 0.17 13.77 0 0.84 0.08 24.8 0
snaive 0.77 0.29 6.49 0.04 0.85 0.11 5.56 0.03 0.82 0.19 16.81 0.05 0.82 0.09 30.07 -0.04

Cua Ong temperature
Size 0.05 0.075 0.1 0.125

DTWBI 0.79 0.09 30.29 -0.02 0.82 0.11 34.59 0 0.83 0.11 35.21 -0.04 0.85 0.11 34.34 -0.06
FFNN 0.83 0.07 24.5 0.05 0.84 0.09 28.85 0.08 0.82 0.13 40.66 0.1 0.83 0.14 45.77 0.07
SARIMA 0.7 0.14 42.12 -0.03 0.76 0.14 43.61 0 0.78 0.14 43.21 0.01 0.78 0.15 44.71 -0.04
BSTS 0.52 0.65 202.04 0.65 0.43 0.6 188.4 -0.8 0.61 0.5 143.9 -0.89 0.48 0.5 155.7 0.042
ses 0.79 0.1 31.8 0.04 0.84 0.1 30.85 0 0.81 0.14 42.95 0.11 0.8 0.16 48.97 0.04
snaive 0.79 0.1 31.8 0.04 0.84 0.1 30.85 0 0.81 0.14 42.95 0.11 0.8 0.16 48.97 0.04

DTWBI 0.15 0.86 0.11 35.1 -0.05 This work was kindly supported by the Ministry of Education
FFNN 0.85 0.13 41.57 0.09 and Training Vietnam International Education Development
SARIMA 0.8 0.16 49.46 -0.02 FEDER - the region Hauts-de-France (CPER 2014-2020 MARCO)
BSTS 0.68 0.53 199.1 0.2 and carried out using the CALCULCO computing platform,
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