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ABSTRACT 
Topological Data Analysis (TDA) is an emerging 
framework for the understanding of Bigdata. This paper 
investigates and develops a TDA approach to image 
forensics that exploits the sensitivity to image tampering of 
a variety of persistent homological invariants of simplicial 
complexes constructed for certain automatically computed 
image texture landmarks. For each image, we construct 
sequences of simplicial complexes, whose vertices are the 
selected set of landmarks, for a sequence of distance 
thresholds and use a variety of homological invariants (e.g. 
number of connected components) to distinguish natural 
face images from morphed ones. We shall demonstrate the 
richness of TDA in dealing with image tampering by testing 
the performance of this approach on a large benchmark 
image dataset of passport photos in detecting various known 
morphing attacks. 
 

Keywords — Image Morphing attacks; TDA; Simplicial 
Complexes; Local Binary Pattern; Persistent Homology.  

 
1. INTRODUCTION 

  Face biometric is a natural tool for identification tasks such 
as in law enforcement, border control, surveillance, user 
identification/verification in mobile phones and many more.  
Morphing of face images has a serious adverse impact on 
increasing deployments of automatic border control (ABC) 
systems [1]. ABC systems incorporate electronic machine 
readable travel documents (eMRTD) such as e-passport [2]. 
E-passports incorporates a scanned-printed face photo of the 
holder and ABC systems compare that with a fresh digital 
face image as the only biometric reference for verification. 
Therefore, morphing attacks on face biometric recognition 
systems gained more attention in the last few years [1], [3].  
When a morphed image stored in eMRTD database is 
similar enough to two persons, then both persons can pass 
ABC face recognition systems successfully [4]. Ferrara et 
al., [1], confirmed the failure of 3 automatic face recognition 
(AFR) systems to differentiate morphed from genuine 
images. Failure of human experts to differentiate genuine 
from morphed images was confirmed in  [5] and [6].  

Morphed images need to be visually faultless and pass 
ABC systems for both source persons. Advanced techniques 

have been developed to produce morphed face images, but 
the complete, the splice and the combined morphing attacks 
are the most well-known and robust techniques. Complete 
morphing warps and blends the entire image whereas 
splicing processes the cropped face region in the image. 
Thus, complete morphed images have spurious shadows, 
while splice-based morphed images suffer from minor 
ghosting artefacts and don’t perform well against face 
recognition. Both schemes depend on the skin color of the 
two persons. The combined morphing scheme was 
proposed, in [7], to overcome all these limitations by using 
the average geometry and texture from both source images.   

Many morph detection/prevention schemes have been 
developed, recently, that deploy known digital forensic 
approaches that rely on the presence of digital image 
features that are sensitive to “invisible” changes resulting 
from morphing, (e.g. [3], [4], [5], and [8] ). Most features of 
interest are naturally linked to image texture landmarks or 
their statistics. In this paper we extend our pilot study, in 
[9], and present an innovative topology-based morph 
detection tool. Our TDA-based approach relies on the 
availability of a much richer pool of information about 
morph sensitive texture features than that offered by their 
mere location/statistics. The topological pool of information, 
consists of a variety of topological invariants to be 
computed from a series of simplicial complexes constructed, 
over a sequences of distance thresholds, from the morph-
sensitive texture-based image landmarks. We demonstrate 
that our topology-based tool outperforms existing morph 
detection schemes for the above 3 morphing attacks and is 
robust against print-scan attack. Genuine images used to 
produce morphed images are available publicly from 
Utrecht database [10].  

The rest of the paper is organised as follows: Section 2 
discusses related work, Section 3 introduces the topological 
image analysis and discuss its suitability for image analysis. 
In section 4 we describe the TDA morph detector and 
present experimental results. Section 5 states conclusions. 
 

2. RELATED WORK 

Many approaches proposed to detect morphed face images 
in the last three years after Ferrera et al. in [1] illustrated 
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that morphed face images can bypass all integrity and 
authentication (optical and electronic) checks. This alarming 
failure of AFR, motivated research into designing and 
testing morph detection/prevention schemes.  

Raghavendra et al. in [4] proposed a morph detector model 
based on micro-texture variation using binarized statistical 
image features. Makrushin et al. in [7] proposed an 
approach to detect morphed faces based on Benford features 
of quantized discrete cosine transform of JPEG compressed 
images. Benford’s law states that leading digits of naturally 
generated random data have a logarithmic distribution. 
Morphed images are artificially created and seem to violate 
Benford’s law. Hildebrandt et al. in [11] investigated the 
influence of different image post-processing approaches 
(e.g. additive noise, scaling and rotation) on the Makrushin 
et al morph detector using anti-forensic methods, such as 
StirTrace, and reported that StirTrace processing has a 
significant impact on morphing detection. In particular, they 
concluded that adding noise will result in morphed images 
to be classified as genuine ones. Tom Neubert in [12] 
presented a progressive image degradation effect, mainly 
JPEG compression, to discriminate legitimate face images 
from morphed ones, and concluded that JPEG compression 
strongly affects genuine images but not morphed images. In 
[13] deep learning approach to face morphing detection was 
analyzed using different network architectures. 

When it comes to morph detection in print-scanned 
scenario, to the best of our knowledge the only technique 
dealing with print-scanned scenario is [8] and [3]. Because 
the process of printing and scanning digital images may 
result in losing low-level information, this makes the 
previous algorithms less effective [14]. Raghavendra et al. 
in [8] presented an approach based on pre-trained Deep 
Convolutional Neural Networks (D-CNN) to detect 
morphed face images. Nonetheless, they reported a 
significant performance decrease in the case of print-
scanned morphed face images. In the same vein,  Ferrara et 
al. in [3] reported that when blending factor is 0.45, their 
technique significantly increased the morph detection ratio 
in comparison with results in [8]. Differentiating legitimate 
face images from morphed ones remains an open issue.     

Ferrara et al. [3], proposed a face de-morphing model to be 
used on a live face image captured at  border gates to reveal 
the genuine passport owner, [3]. The authors examined the 
effect of the alpha blending factor on detection and 
concluded that the best blending factor does not exceed 0.3.  

3. TOPOLOGICAL IMAGE ANALYSIS 
Data analysis in any domain aims to discover patterns in the 
data representations of the domain objects that can be used 
for various tasks e.g. classification and recognition. Records 
are modelled by specific features that are deemed to be 
discriminating in terms of a specific distance/similarity 
function. Traditionally, the analysis relies on the extracted 

features and the pairwise symmetry relations among the data 
points. Recent big data applications reveal that data is more 
complex, noisier, has more missing information but more 
interestingly has shape [15]. Topology is the field of 
mathematics that studies connectivity and closeness 
properties of shapes (objects). Topological spaces and their 
properties are invariant under deformation, coordinate free 
and can be expressed in a compressed form [16]. The recent 
emerging paradigm that utilizes the use of topological 
invariants to understand high dimensional and complex data 
sets for complex classification applications is known as 
Topological Data Analysis (TDA).  TDA application scope 
is growing fast and it is out of the scope of this paper to 
discuss it, however, the recent survey by Massimo Ferri [17] 
contain a detailed up-to-date applications where topology 
plays a vital role. 

For image analysis, our pilot work in [9] demonstrated that 
the spatial distribution of landmarks of certain texture 
features in each image conveys a plethora of topological 
information, beyond their mere values, which adds a 
significant discriminating parameters. TDA-based image 
analysis is akin to a multi-resolution analysis of the shape 
generated by the image landmarks with respect to a series of 
thresholding pairwise landmark distances. Extracting 
insights from images using topological methods has great 
benefits to machine learning in Image analysis.   

Algebraic topology research provides perfect realizations of 
a multi-resolution topological image analysis scheme via a 
combinatorial process that yields a series of Simplicial 
Complexes (SC). We use what is known as Vietoris-Rips 
(Rips for short) simplicial complex construction. Rips 
complex construction, roughly, is the process of using a set 
of extracted landmark points as the initial set of 0-
dimensional simplices, from which we construct for each 
distance threshold the set of 1-D simplices (edges of length 
smaller than the threshold), a set 2-D simplices (triangles 
from the constructed edges) and 3-D simplices (made up of 
4 of the constructed 2-D simplices that have shared nodes) 
and so on.  The simplicial complex shape is made by gluing 
these simplices together along their edges and faces.   

Homology is the most commonly used machinery to 
characterize topological features/invariants of the Rips SC 
of shapes. In particular, the properties of homology groups 
of SC’s are used to classify the topology of shapes. For 
example, the Betti numbers Bn (i.e. the ranks of the n-th 
homology group of the SC), determines the maximum 
number of cuts without disconnecting the SC, [18]. The B0, 
is the number of connected components (cc) and is widely 
used for its ease of computing. Instead of depending on the 
topological invariants at a given threshold, TDA relies more 
on capturing variation/persistency of these invariants across 
an increasing sequence of thresholds. In the literature, this is 
known as persistent homology based analysis, (e.g. [15], 
[19]). Next we describe our morph detection model.  
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4. TOPOLOGICAL MORPH DETECTOR  

First step in designing a topological morph detector is the 
selection of an appropriate set of automatically extractable 
image landmarks that are sensitive to morphing. The tool 
then is construct a sequence of Rips SC’s, whose 0-
simplices are the landmark pixels, for a finite increasing 
sequence of thresholds {ti}, that ends when the resulting  SC 
is connected. Here, we use different sets of LBP points. 

4.1 Local Binary Pattern (LBP). 

 LBP was originally proposed by Ojala et al. [20] to 
characterize texture in images. In general, each pixel in the 
input image will be relabeled by a decimal number that 
encapsulate the local texture information around it. The LBP 
process start by subtracting center pixel from its 8-neighbor 
pixel surrounding it. Starting from top-left corner neighbor, 
each position will be assigned by 1 or 0 depending on the 
subtraction result based on the following condition: 
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Where n scans neighbors of the central pixel, ic and in are 
grayscale values of the central pixel and its surrounding 
pixels, and the function s(x) is defined as: 

         𝑠 𝑥 = 	
  
1	
  	
  𝑖𝑓	
  𝑥 ≥ 0
0	
  	
  𝑖𝑓	
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Each pixel in the resulting LBP image is encoded as a byte 
determined by the 8 s-bits in a counterclockwise order 
starting from the top-left corner. An LBP code byte is called 
uniform if it has 0 or 2 bitwise transitions from 0 to 1. It has 
been shown that in face images uniform LBP (ULBP) codes 
constitute 90% of the LBP codes [21]. Therefore, here we 
opt for choosing sets of uniform LBP points to construct our 
sequence of Rips SCs. Besides the 2 LBP codes of all 0’s 
and all 1’s, there are 56 different ULBP codes that can be 
split into 7 groups (of 8 codes) each is identified in terms of 
the number of 1’s. Each of these groups is associated with a 
specific types of image texture. We shall refer to the ULBP 
bytes that has t consecutive 1’s as the t-geometry. We tested 
the sets of pixels in all the geometries as potential landmarks  
candidates, and we found, in our pilot study, [9], that all are 
sensitive to morphing but the 2-ones geometry (representing 
end line texture) is the most sensitive to morphing.  

4.2 Rips Simplicial Complex Construction  

Note that each t-ones code is obtained from the byte that has 
1 in its t left most position by circular rotation and thus each 
group subdivides into 8 codes identified by its rotation. 
Given the positions of the 8 sets of t-ones LBP codes, we 
proceed to construct 8 sequences of threshold-dependent 
Rips complexes, one for each rotation of the t-ones codes, 
using the Euclidian distances. Threshold 0, yield 8 SC’s that 
only consist of 0-simplices, one for each rotation. For 

simplicity, one can first create a distance matrix D for each 
rotation before applying other thresholds. The choice of the 
subsequent thresholds can be determined by subdividing the 
range of D-values, but we use a fixed sequence of thresholds 
(T1 = 0, T2 = 3, T3 = 5, T4 = 7, T5 = 10, and T6 = 15).  Beyond 
a certain threshold the simplicial complexes get nearer to 
become complete graphs which means invariants like the 
one we use here (No. of connected components) become 
less discriminating images of different types.  

For each rotation, the Rips complexes RTi constructed over 
the Ti thresholds i=1 2,..,6, form a nested sequence of SCs:  
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For each one of these Rips SC, at a given threshold, distinct 
homology invariants across the 8 rotations can be used as 8-
dimensional feature vectors representing the input image. 
Here, we use the number of connected components as our 
Genuine Vs morphed discriminating feature. Figure 1, 
below, is a block diagram of our topological morph detector.  
 

 
Figure 1: Topological Morph Detector Pipeline. 

 
4.3 Morphing Classification Experiments 

Our morph detection tool is based on supervised machine 
learning using an appropriate classifier at each of the 6 
thresholds. Since, our chosen feature vector is of the 
relatively low dimension of 8 then we opted for the known 
Nearest Neighbors (KNN, with K=1) [22]. The KNN is a 
non-parametric, instance based, simple yet robust classifier 
that uses proximity to template feature vectors of known 
class selected at the training stage. Our experiments are 
based on a dataset of thousands of face images formed by 
applying the 3 morphing, discussed in section 1, using pairs 
of 71 genuine non-smile images in Utrecht face Database.  
The dataset of face images used in our experiments consists 
of:  71 non-smiling genuine face images; 1298 complete 
morphed images; 2612 splicing morph images; and 2650 
combined morph images. All images are segmented such 
that only the frontal face region will be used to extract 
ULBP codes using dlib library version 19.2 (http://dlib.net/).   

The experiments below are restricted to the SCs for 2-ones 
geometry, and use 4 different evaluation protocols: 
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•   P1: Leave-one-out, where one image is randomly 
selected for testing and the rest are used for training.  

•   P2, P3 and P4: Respectively 30%, 50% and 70% 
images are used for training and the rest for testing. 

We repeated each experiment 100 times in what is known as 
100-fold cross validations. The tables below, show the 
average detection accuracy for the 3 morphing attacks. 

Table 1: KNN Classification for Morphing Attacks. 

	
   Distance	
  Thresholds	
  

Morphing	
  

Schemes	
  

Protocols	
  

T=0	
  

T=3	
  

T=5	
  

T=7	
  

T=10	
  

T=15	
  

Combine	
  
Morph	
  

P1	
   99 99 97 95 98 99 

P2	
   99 98 97 95 98 99 
P3	
   99 98 97 95 98 99 
P4	
   99 98 97 95 98 99 

Splicing	
  

Morph	
  

P1	
   97 97 96 100 94 97 

P2	
   99 97 96 99 94 97 
P3	
   97 97 96 99 94 97 
P4	
   97 97 96 99 94 97 

Complete	
  

Morph	
  

P1	
   96 96 95 95 92 93 
P2	
   96 96 95 94 92 93 
P3	
   96 96 95 94 92 93 
P4	
   96 96 95 94 92 93 

 
The above table clearly demonstrates significant sensitivity 
of the cc2 features to the above morphing schemes at a range 
of thresholds. Interestingly, accuracy is independent of 
training protocols. Further analysis of these results, not 
shown here due to space limitation, show that the false 
rejection rates are very low (≈ 0.25%) while the false 
acceptance rates are quite high (≈ 17%). This could be 
partially due to the imbalanced training which include much 
larger examples of morphed images than genuine ones. 
Performance of TDA with other t-ones geometries, have 
slightly different proportions of errors and fusing several 
geometries is expected to improve the false positive rates.     

We also conducted a limited test of the performance of our 
approach to detect morphing of print-scanned P&S images. 
In this test we used 140 images (71 original images, 71 
splicing morphed images) printed and then scanned with 
CanoScan model 9000F MarkII. The images were produced 
by the Advanced Multimedia and Security Lab (AMSL), 
Otto-von-Guericke-University of Magdeburg. These images 
were of different resolutions ranging from 121x136 to 2017 
x2517. We rescaled all images into 220x270, extracted the 
2-ones ULBP pixels, and constructed their Rips complexes 
at different thresholds for the 8 rotations as we discussed 

previously. As before, we extracted the 8-dimensional cc2 
feature vectors at each threshold. The performance of our 
scheme at the 6-different thresholds are shown in Table 4. 

Table 2: NN classification results for P&S Morphing Attack. 

 T=0 T=3 T=5 T=7 T=10 T=15 
P1 78.87 77.46 73.94 77.46 82.39 72.53 
P2 75.64 74.72 74.77 77.1 79.33 70.13 
P3 77.97 76.14 74.81 78.28 80.11 72.65 
P4 78.57 77 74.76 78.59 81.40 72.38 

Although, these results are sufficient to demonstrate the 
success of TDA approach, they are not as good as their non-
print-scanned versions. This may be attributed partly to the 
significant variation in the image resolution and the fact that 
the P&S process may result in different level of degrading 
as a result of using different scanners. Perhaps, the rescaling 
process have led to variable loss of information. At this 
stage we cannot compare our P&S results with the 
techniques in [8] and [3] as they used different scanners. We 
expect that improved results can be achieved if P&S process 
use a fixed image size.    

These results may seem to be too good to believe, and 
doubts may be raised about achieving such results for larger 
datasets of images. To demonstrate that these results are not 
a case chance, we conducted an experiment on 10,000 
natural images randomly selected from the BOSSBase 
image database (http://dde.binghamton.edu/download/) to 
test the sensitivity of ULBP codes to tampering. We 
calculated the number of pixels that are different from their 
immediate neighbors by	
  ±1, to estimate the chance that 
LBP codes changing their structures so that some ULBPs 
loose their uniform structure while non-uniform LBPs 
become uniform. Our experiment, revealed that on average 
more than 78% of the pixels in those natural images have 
±1 differences from their neighbors and thus we expect that 
reasonable number of changes to number of ULBPs as a 
result of tampering. This is a good indication of the 
sensitivity of ULBPs (as well as their sequences of Rips 
SCs) to morphing as well as to other image tampering.  

What makes the proposed tool so powerful is that no prior 
knowledge about the morphed image is required, and the 
landmarks are automatically determined. The cc2 invariant 
captures the global information of the shape of constructed 
Rips complexes over different thresholds. These are by no 
mean the only features that we found to be sensitive to 
morphing and general image tampering. Indeed, our 
ongoing research reveal a significant improvement on these 
results can be achieved by other topological parameters.   

5. CONCLUSION  
  We investigated and developed a novel automatic 
topological invariant approach to detect morphed face 
images. Experimental investigations presented in this work 
demonstrated that morphing process changes the topological 
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properties of the various threshold-based Rips SC’s built on 
certain ULBP landmark points. The excellent classification 
accuracy that resulted from the connected components 
feature associated with a single geometry, confirm the 
success of TDA as a new morph detector which depends on 
topological properties of constructed shapes from the given 
photo ID faces. More experiments are needed to improve 
P&S images classification accuracy. We also need to 
expand this work beyond the cc feature by including other 
topological invariants of the Rips SC’s. In fact, we have 
evidences that TDA-based schemes that use other local 
image information have more potentials for success. Our 
ongoing work indicate, beyond any doubt, the success of 
TDA for detecting other tampering attacks. 
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