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Abstract—Typical HSI sensors employ scanning along certain
dimensions in order to acquire the hyperspectral data cube.
Snapshot Spectral Imaging architectures associate a particular
spectral band with each pixel, achieving high temporal sampling
rates at a lower spatial resolution. In this work, we study
the problem of efficient estimation of missing hyperspectral
measurements and we evaluate the impact of the reconstruction
quality on the subsequent task of classification. We explore
two cutting edge techniques for undersampled signal recovery,
namely matrix and tensor completion, and we evaluate their
performance on hyperspectral data recovery. Furthermore, we
quantify the effects of the reconstruction error on state-of-the-
art machine learning algorithms via metrics such as classification
accuracy and Fl-score. The results demonstrate that robust
and efficient classification is feasible, even from a substantially
reduced number of measurements being available, especially
when emerging deep learning approaches are adopted. Moreover,
significant gains are obtained when exploring higher order
structural information via tensor modelling, as compared to low
order matrix-based methods.

I. INTRODUCTION

Hyperspectral Imaging (HSI) has demonstrated great poten-
tial in remote sensing, having an established presence in Earth
Observation [1], while gaining momentum in terrestrial appli-
cations as well [2]. HSI involves the acquisition of complex
information across the electromagnetic spectrum, capturing the
spectral content of each pixel in the scene and facilitating
operations like detecting objects, characterizing materials, and
identifying processes.

Each hyperspectral image is naturally represented as a
three-dimensional structure, called a hypercube, where two
dimensions are spatial and one is spectral. In many cases, a
significant number of elements are missing from hypercubes
either due to errors or by design. One particular example
of missing measurements is the case of Snapshot Spectral
Imaging (SSI). SSI architectures rely on the use of spectrally
resolved detector arrays where each pixel is associated with
a specific spectral band, allowing the acquisition of a full
hyperspectral cube from a single exposure [3]. Unfortunately,
to achieve high temporal resolution imaging, SSI architectures
must sacrifice spatial resolution since only a small subset of
pixels observe each spectral band. It comes as no surprise that
the performance of the ensuing classification process depends
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on the efficiency of the missing measurements recovery mech-
anism that is employed.
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Fig. 1. The proposed framework. Matrix-based and Tensor-based reconstruc-
tion and subsequent classification of hyperspectral data.

In this work, we investigate the impact of HSI recovery from
a small number of SSI observations on scene classification.
We introduce a complete framework, illustrated in Fig. 1,
for data structuring, reconstruction, and classification of the
overall HSI processing chain in the presence of missing values.
We consider two distinct approaches for structuring the data;
as two-dimensional matrices and as three-dimensional tensors.
Our goal is to quantify the quality of recovery and classifica-
tion of the full set of observations, through the application
of two state-of-the-art recovery approaches, namely Matrix
Completion (MC) and Tensor Completion (TC). The key
contributions of this paper can be summarized as follows:
e Quantify the potential of missing HSI measurements’
reconstruction by adopting MC and TC approaches
o Assess whether further structural information of the data
can lead to better and more accurate reconstruction
¢ Quantify the impact of reconstruction on HSI data clas-
sification
While the problems of recovery via MC [4] and clas-
sification of SSI data [5] have been explored before, the
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novelty of this work lays in a comprehensive evaluation of the
impact of completing higher-order structures on classification
performance.

II. RECOVERY AND CLASSIFICATION WITH MISSING
MEASUREMENTS

Bearing in mind that the end goal of HSI systems usually
refers to machine learning tasks (e.g. supervised classification),
the existence of missing measurements in the (train and test)
dataset could easily put in jeopardy the whole framework of
classification, necessitating the introduction of efficient data
imputation techniques.

Given the high-dimensional nature of the hyperspectral data-
cube, it seems reasonable to treat it as a third-order tensor
structure. Tensors constitute generalizations of vectors and
matrices that encode high dimensional structural informa-
tion [6]. Quite common is the strategy of flattening high-
dimensional arrays into two-way matrix structures, in order to
perform matrix-based processing. In this case, the dimensions
of the matrix correspond to pixels (the two spatial dimensions
stacked in a ”long” vector) and to spectral bands.

Let us consider a HSI data matrix M € R"*"2  where
ny is the number of pixels and n, is the number of spectral
bands. Matrix completion tries to recover all its entries from
a partially observed fraction of them. More formally, let €2 be
the set of known indices (i1, 2) corresponding to the available
measurements, whereas the linear map A is defined as an
operator setting the values of all unknown indices to zero

if (i1,i2) € Q
0, otherwise.

Mg,
AM) = { 1 (1)
In [7] it was shown that recovery of the missing values from a
low rank matrix M is possible by solving the following rank
minimization problem:

mini}gnize rank(X)
subject to A(X) = A(M). (2)

Although rank minimization can recover the matrix, it is
impractical for real-life problems due to its NP-hard nature.
Fortunately, it has been shown that the nuclear norm, i.e, the
sum of the singular values, can serve as a proxy to the rank.
Thus, the optimization problem in (2) can be reformulated
according to

mini){nize 1X]] «
subject to  A(X) = A(M). 3)

To better take advantage of the inherent correlation structure
in a HSI data-cube, we herein propose to address the problem
of missing measurements by employing a tensor completion
approach. In the HSI case, the aforementioned SSI data
collection process leading to missing measurements results in
an under-sampled [n1] X [n2] X [ng] tensor T (where in this case
ny and no stand for the spatial dimensions of the data-cube
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and ng for its spectral one), which we wish to fully populate
using a fraction k of its measured entries.

Equation (3) can be extended to handle higher-order tensors,
by solving the following optimization problem in order to
estimate the lowest-rank tensor X which agrees with the
available data

mini)?lize I
subject to  A(X) = A(T) “4)

where (2 is the index set (i1,i2,43) of observed entries, and
the linear map A is defined, as before, as a random projection
operator keeping the entries in 2 and zeroing out others; that
is

®)

0, otherwise.

A(T) _ {Ti1i2i37 if (il,ig,’ig) e

However, the optimization regime is now tougher than before,
as the tensor nuclear norm is not defined as the tightest convex
relaxation of the tensor rank, as was the case with matrices.
Adopting the approach proposed in [8], one can define the
tensor nuclear norm as follows:

121 = il X |1« (6)
=1

where n depicts the order-mode of the tensor (i.e. n = 3 in
our HSI case), and «;’s are weights satisfying «; > 0 and
Z?:l «; = 1. Thus, the nuclear norm for a general tensor
case can be defined as the convex combination of the nuclear
norms of all matrices unfolded along each of its modes. Under
this definition, Equation (4) can be written as
n
minimize ;%HX@)H*

subject to A(X) = A(T) (7N

For solving the optimization problem described in (3), we used
the Augmented Lagrange Multipliers method (MCALM) [9]
as well as the k-Nearest Neighbor Imputation method (KNNI)
with £ = 1 [10]. For tackling the optimization problem in (7),
we employed the Low-Rank Tensor Completion using Parallel
Matrix Factorization method (TCTMAC) [11].

Once the missing values of the hyperspectral data are
recovered, machine learning algorithms such as supervised
classification can be applied. In our set-up, we assume that
missing measurements occur during both training and testing,
since we want to consider the case where the same SSI sensor
is employed during both stages. Within the framework of this
study, we utilize the data obtained by imputation to train
and evaluate the performance of four classes of classifiers.
Specifically, we consider the SVM family with linear (LSVM),
quadratic (QSVM) and Gaussian (GSVM) kernels; a k-Nearest
Neighbours (KNN) classifier with £ = 10 and Euclidean
distance; a Decision Tree (DT) with Gini’s diversity index
as a split criterion; and finally a Deep Convolutional Neural
Network (DCNN) with two-dimensional trainable filters for
hierarchical feature learning.
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III. EXPERIMENTAL EVALUATION

In this Section, we report on the experimental evaluation
of the proposed scheme using the publicly available Indian
Pines ! annotated hyperspectral dataset. The HSI datacube is
composed of 145 x 145 pixels, over 200 different spectral
reflectance bands (in the wavelength range of 400 — 2500
nanometers), as 24 water absorption bands obtained from the
sensor instrument were discarded. The Indian Pines scene
contains two-thirds agriculture, and one-third forest or other
natural perennial vegetation. Each pixel is labelled using one
of sixteen different classes, among which one can find crops,
dual lane highways, a rail line, some low density housing, as
well as other building structures and smaller roads. It has to
be mentioned that supervised training was conducted using
the ground truth image of the aforementioned dataset and
that background pixels were not considered for classification
purposes.

Concerning the employed classifiers, special mention has to
be made to the CNNs, a promising type of deep models which
produce hierarchically complex features by applying trainable
filters and pooling operations on raw input. Training CNNs
though is a quite computational costly process, as a convolu-
tion of each input with each trainable filter has to take place.
To overcome this, prior to the training and the prediction stages
of the DCNN classifier, we perform a dimensionality reduction
technique across the spectral dimension of the hyperspectral
datacube. Based on prior art on this topic [12], we utilized
the Randomized PCA method and preserved only the most
”informative” 5% of the spectral information (namely, ¢ = 10
out of the C' = 200 spectral bands). As long as the spectral
information is condensed, the spatial ones are compensated
by forming patches at the vicinity of each pixel in order to
take into consideration not only the pixel itself but its closest
neighbours as well. The size of each patch, p, is set to 5 x 5,
as bigger sizes do not improve classification accuracy, while
computation time increases [12].

The CNN classifier is fed with ¢ inputs of size p x p, and
consists of 2 convolutional layers with trainable 3 x 3 filters.
As long as we do not take into consideration any scaling or
translation factors, we do not use any max-pooling layers and
the number of filters of each layer are set as Cy = 3 x ¢ and
Cy = 3 x (1, respectively [12]. The rest of the employed
classifiers are trained with the raw HSI data (i.e. all the
available spectral bands).

To evaluate the performance of the end-to-end system, two
different quality metrics were considered. The reconstruction
quality is evaluated using the Normalized Mean Square Error
(NMSE) metric, defined as the mean square error between
the fully-populated and the reconstructed data, normalized
with respect to the lo norm. Regarding the classification
process, standard performance metrics such as classification
accuracy and the Fj-score are used. Note that to quantify the
performance of each step, randomly subsampled observations

Uhttp://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes
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were first recovered and subsequently used for training and
testing. Although in some HSI imagers down-sampling may
be performed in a “structured” manner due to the set-up of
the acquisition system, in order to be aligned with MC theory
in terms of being able to recover the desired solution [7], the
sampling set 2 was chosen uniformly at random.

A. Effect of the Training Set Size on the Classification Perfor-
mance

The objective of this experiment is to assess the performance
of the classifiers relative to the size of the training set. A
random selection of up to 7174 training examples was con-
sidered, and 3075 where utilized for testing. Fig. 2 illustrates
the performance of each classifier measured as a function of
the number of the training examples.
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Fig. 2. Classification accuracy w.r.t. the number of the training examples.
The more training examples are used, the better the classification accuracy.

The results demonstrate that increasing the number of
training examples has a positive effect on the generalization
capacity of each classifier, as dictated by the theoretical un-
derpinnings. The majority of the considered classifiers present
a stable performance when trained with at least 5000 training
examples. It should be noted that the Deep CNN classifier
achieves the best performance among the ones employed and
it does so with 95% of the spectral information cast away
compared to the competitor algorithms, as explained earlier.

B. Effect of the Fill Ratio on the Reconstruction Error

In this set of experiments, we investigate the reconstruction
quality of the three considered imputation methods as a
function of the number of observed samples. In the matrix-
based approaches, namely KNNI and MCALM, the dataset is
structured as a 21025 x 200 matrix, while in the tensor-based
modelling a 145x145x 200 tensor was considered. To quantify
the performance of the different methods, the fill-ratio metric,
f, is defined as the number of the observed samples over the
total number of samples in the measurements.

Fig. 3 presents the reconstruction quality in terms of NMSE
as a function of f. The results clearly demonstrate that
adopting a tensor-based approach offers concrete advantages
in terms of reconstruction quality, in contrast to the matrix-
based methods. More specifically, the worse performance
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Fig. 3. NMSE w.r.t f for all applied reconstruction methods. Adoption of the
higher-order tensor approach clearly leads to more accurate reconstruction.

corresponds to the KNNI method followed by MCALM, while
the best performance is obtained by TCTMAC. Even when
presented with the smallest number of observations (f = 0.1),
the performance of TCTMAC is better compared to MCALM
at almost full sampling (f = 0.9).
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Fig. 4. Computation times with respect to fill ratio f for all reconstruction
methods. Tensor-based recovery is the most computational demanding, with
a closing gap between TCTMAC and MCALM at larger fill ratios.

Naturally, the improved classification performance of the
tensor-based methods does not come for free, as demon-
strated by the execution times plots in Fig. 4. However, one
should highlight the fact that the gap between TCTMAC
and MCALM reconstruction time narrows as the fill-ratio
increases, indicating that adopting a higher-order processing
structure offers significant merits. Overall, the results clearly
demonstrate the merits and reconstruction potential of higher-
order modelling.

C. Effects of Reconstruction on Classification Performance

In the final set of experimental results, we incorporate
the concept of missing measurements structuring and re-
construction into the overall classification process and we
quantify the effect of the reconstruction quality to the resulting
classification performance. Fig. 5 illustrates the classification
accuracy of all five employed classifiers, for each imputation
method, as a function of the fill ratio f.
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Fig. 5. Classification accuracy for KNNI (top), MCALM (middle) and
TCTMAC (bottom) recovery w.r.t. to f. Tensor completed data lead to clearly
higher levels of classification accuracy for all employed machine learning
algorithms and all different values of f.

An important observation regarding the overall performance
of the proposed framework is that, for all employed classifiers,
efficient classification accuracy can be achieved by severely
undersampled data. This result is in alignment with the results
shown in Fig. 3, where we observe that increasing the fill ratio
leads to better performance. While for matrix-based meth-
ods the performance improves gradually, TCTMAC exhibits
remarkable stability and performance, achieving almost opti-
mal classification accuracy even with extremely undersampled
data.
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In order to further support these claims, Table I presents the
obtained classification accuracy by all employed classifiers, for
each one of the imputation methods and for two representative
values of missing data. We focus on the cases of f = 0.04 and
f = 0.0625 sampling due to their significance in actual SSI
architectures. The results presented in Table I clearly demon-
strate that even when 4% of the observations are available, the
tensor-based approach leads to a classification accuracy which
is on par to the accuracy achieved using the fully-populated
data. On the other hand, the classification accuracy of the
matrix-based approaches improves as more data are revealed
to the solvers. Nevertheless, both matrix-based methods are
clearly outperformed by the tensor-based approach.

TABLE I
CLASSIFICATION PERFORMANCE FOR TWO REPRESENTATIVE SSI FILL
RATIOS

f Method LSVM QSVM GSVM K-NN DT DCNN
< KNNI 0.08 0.15 0.24 0.13 0.27 0.37
g MCALM 0.04 0.01 0.11 0.19 0.25 0.42

TCTMAC 0.72 0.88 0.85 0.73 0.55 0.97
2 KNNI 0.09 0.19 0.26 0.14 0.28 0.39
8 MCALM 0.10 0.06 0.12 0.20 0.25 0.42
S | TCTMAC 0.74 0.89 0.85 0.76 0.58 0.97
1 - 0.82 0.91 0.86 0.76 0.62 0.98

IV. CONCLUSIONS

In this work, we have investigated the effects of missing
measurements reconstruction on the classification performance
using hyperspectral data. We have focused on two different
approaches of imputing missing data: matrix and tensor com-
pletion. Based on our experimental findings, we can conclude
that excellent classification accuracy is feasible even in the
presence of only 4% data observations using tensor-based
completion and state-of-the-art DCNNs. Clearly, adopting a
tensor-based approach proved to be a better strategy for
efficient recovery as compared to the matrix-based imputa-
tion algorithms, while its computational complexity, although
larger, it is not prohibitive. The results demonstrate that higher-
order structuring of the data leads to a significantly better
recovery, which in turn translates to an improved classification
performance.
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