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Abstract—Sparse phase retrieval (PR) aims at reconstructing
a sparse signal vector from a few phaseless linear measurements.
It emerges naturally in diverse applications, but it is NP-hard
in general. Drawing from advances in nonconvex optimization,
this paper presents a new algorithm that is termed compressive
reweighted amplitude flow (CRAF) for sparse PR. CRAF operates
in two stages: Stage one computes an initial guess by means of
a new spectral procedure, and stage two implements a few hard
thresholding based iteratively reweighted gradient iterations on
the amplitude-based least-squares cost. When there are sufficient
measurements, CRAF reconstructs the true signal vector exactly
under suitable conditions. Furthermore, its sample complexity
coincides with that of the state-of-the-art approaches. Numerical
experiments showcase improved performance of the proposed
approach relative to existing alternatives.

Index Terms—Sparse recovery, spectral initialization, model-
based hard thresholding, linear convergence

I. INTRODUCTION

Phase retrieval (PR) refers to the task of reconstructing a

signal vector from its phaseless measured linearly transformed

entries. It emerges naturally in diverse engineering and physics

applications such as X-ray crystallography, microscopy, optics,

and coherent diffraction imaging. In such setups however, the

physical devices can only measure the density of the incoming

light, but not its phase. This missing phase information renders

general PR ill-posed.
Several PR approaches have been reported so far. Alter-

nating projection methods were developed in [1], [2], itera-

tive nonconvex schemes in [3]–[11], and convex approaches

were suggested in [12]–[15]. We also recently developed a

reweighted amplitude flow (RAF) algorithm that benchmarks

numerical performance for PR of general signal vectors from

random measurements [7]. The signal vectors in many practical

scenarios however, are naturally sparse after certain known

and deterministic linear transformations have been applied [2],

[16]. This prior information can be critical in reducing the

number of measurements required by general PR strategies,

and has prompted the development of various (block) sparse

PR solvers. To this end, the soft-thresholded Wirtinger flow

(TWF) [17] and the sparse truncated amplitude flow (SPARTA)

[16] were developed; see also [18] for the (block) compressive

PR with alternating minimization (CoPRAM).
Building on our precursors in [7], [16], this paper presents

a new algorithm that is called compressive reweighted ampli-

tude flow (CRAF) for (block)-sparse PR. Generalizing [16],

while further accounting for structured sparsity patterns, the

amplitude-based (block)-sparse PR problem is formulated, for

which a two-stage approach is suggested. Stage one obtains

an accurate sparse initialization using a new spectral proce-

dure, which judiciously assigns negative or positive weights

to data samples. The second stage refines the initial guess

through (model-based) iteratively reweighted hard thresholding

iterations. CRAF provably recovers the true signal vector at a

linear rate under suitable conditions. Finally, numerical tests

corroborate the merits of the proposed approach. Regarding

notation, lower- (upper-) case boldface letters stand for column

vectors (matrices). Symbol ‖·‖2 denotes the Euclidean norm,

whereas ‖·‖0 for the �0 (pseudo)-norm counting the number of

nonzero entries in a vector. Operator �·� returns the smallest

integer greater than or equal to the given scalar. The Gauss er-

ror function erf(x) is given by erf(x) := (1/
√
π)

∫ x

−x
e−x̃2

dx̃.

II. COMPRESSIVE PHASE RETRIEVAL

The compressive PR aims at recovering a sparse signal

vector from a few magnitude-only measurements [16], [17].

Mathematically, it can be posed as follows: Given a small set

of phaseless linear measurements

ψi = |〈ai,x〉|, 1 ≤ i ≤ m (1)

where {ψi}mi=1 are the observed amplitude data, and {ai ∈
Rn}mi=1 the known sampling vectors, the goal is to recover a

(kB)-sparse solution x ∈ Rn, namely ‖x‖0 ≤ kB with kB
being the known sparsity level. To accommodate also block-

sparse signal vectors, the following terminology is useful.

Suppose without loss of generality that x is split into NB

blocks {xb}NB

b=1, namely x := [xT
1 · · · xT

NB
]T . For brevity,

let NB := {1, . . . , NB} denote the index set of all blocks,

and Bb collect all indices of the entries of x corresponding

to the b-th block. Hence, Bb ⊆ [n] for all b ∈ Nb, where

[n] := {1, . . . , n} consists of all indices of x.

Definition 1 (k-block-sparse vectors [19]): The k-block

sparse vectors refer to vectors x = [xT
1 · · · xT

NB
]T such that

xb = 0 for all b /∈ SB , where SB is a subset of NB with

cardinality |SB | = k.

For simplicity, we consider that each block of the signal

vector has equal length, that is, |Bb| = B for all b ∈ Nb with
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BNB = n. Clearly, when B = 1, the block-sparse PR boils

down to the ordinary or unstructured sparse PR. Accordingly,

we will henceforth focus on developing recovery algorithms

for a block-sparse signal vector.

Adopting the least-squares criterion, the task of recovering

a k-block sparse vector from m amplitude-only measurements

can be formulated as [6], [16]

minimize
z∈Mk

B

�(z) :=
1

2m

m∑
i=1

(
ψi − |aT

i z|
)2

(2)

where Mk
B denotes the set of all k-block-sparse vectors of

dimension n. Because of the modulus operator as well as the

combinatorial constraint, problem (2) is in general NP-hard,

hence computationally intractable.

For concreteness, the real Gaussian model is adopted, which

assumes x ∈ Rn, and independent and identically distributed

(i.i.d.) sensing vectors ai ∼ N (0, In). When there are enough

measurements, it is reasonable to assume existence of a unique

(up to a global sign) k-block-sparse solution {±x} to the

quadratic system in (2) [16]. The goal of this paper is to devise

simple scalable algorithms to provably recover x from as few

intensity-only measurements as possible.

III. COMPRESSIVE REWEIGHTED AMPLITUDE FLOW

This section introduces the two stages of CRAF, namely

the initialization and the refinement stages. To begin with , the

distance from any estimate z ∈ Rn to the solution set {±x} ⊆
Rn is defined as dist(z,x) := min{‖z + x‖2, ‖z − x‖2}.

A. Sparse spectral initialization

A modified spectral initialization that utilizes the informa-

tion from all available data is discussed first. Relative to past

PR initializations in [4]–[7], enhanced numerical performance

is achieved by assigning judicious weights to all sampling vec-

tors. Subsequently, the generalization of the new initialization

procedure to sparse PR settings is justified.

1) Spectral initialization: Obtaining a good initialization is

instrumental in establishing convergence of iterative nonconvex

optimization procedures to the global optimum. Consider first

the general PR, in which the sparse prior information is not

exploited. Similar to prior art, the new initialization entails

estimating the norm ‖x‖2 as well as the directional vector d :=
x/‖x‖2 [9]. Regarding the former, it is well documented that

r̂ :=
√

m−1
∑m

i=1 ψ
2
m is an unbiased and tightly concentrated

estimate of r := ‖x‖2 when m ≈ n [9]. The challenge remains

to estimate d, namely obtain a unit vector d̂ that is maximally

correlated with d.

Among different initialization strategies, the procedure pro-

posed in [6] proves successful in achieving excellent numerical

performance in estimating d; see robustified alternatives in

[9]. Nonetheless, the truncation therein discards the useful

information carried over in a non-negligible portion of samples.

To leverage all data samples, the new procedure obtains the

wanted approximation vector as

d̂ := arg max
‖z‖2=1

zT
( λ−

|I−|
∑
i∈I−

aia
T
i +

λ+

|I+|
∑
i∈I+

aia
T
i

)
z

(3)

where λ− < 0 and λ+ > 0 are preselected coefficients, and

the index sets I− := {i ∈ [m] : ψ2
i ≤ r̂2/2}, and I+ := {i ∈

[m] : ψ2
i ≥ r̂2/2}. It is worth pointing out that the judiciously

devised index sets satisfy I = I−∪I+, suggesting full use of

the available data samples. With r̂ and d̂ at hand, the initial

estimate of x can be obtained conveniently as z0 := r̂d̂.

Intuitively, the initialization strategy in (3) can be justified

as follows. Using the rotational invariance of a ∼ N (0, I), it

holds for any thresholds τ1, τ2 ∈ [0, 1] that

E
[
aaT |〈a,d〉2 ≤ τ1

]
= In − ddT + E[〈a,d〉2|〈a,d〉2 ≤ τ1]dd

T (4)

E
[
aaT |〈a,d〉2 ≥ τ2

]
= In − ddT + E[〈a,d〉2|〈a,d〉2 ≥ τ2]dd

T . (5)

Furthermore, [9, Lemma 3.2] asserts that

E
[〈a,d〉2|〈a,d〉2 ≤ τ1

] ≤ τ1/3.

Therefore, the smallest eigenvalue of E[aaT |〈a,d〉2 ≤ τ1]
satisfies

λn

(
E[aaT |〈a,d〉2 ≤ τ1]

) ≤ τ1/3

whereas all other eigenvalues are

λi

(
E[aaT |〈a,d〉2 ≤ τ1]

)
= 1, 1 ≤ i ≤ n− 1.

Similarly, one can establish the following lower bound for

the second term E[〈a,d〉2|〈a,x〉2 ≥ τ2] in (5).

Lemma 1: Consider any nonzero signal vector d ∈ Rn with

‖d‖2 = 1. If a ∼ N (0, I), then for any τ ≥ 0, it holds that

E
[〈a,d〉2 ∣∣〈a,d〉2 ≥ τ

] ≥ 6− τ erf(
√
τ)

6− 3 erf(
√
τ)

. (6)

To help understanding the assertion of Lemma 1, taking

τ = 0.5 as an example, we find E[〈a,d〉2|〈a,d〉2 ≥ 0.5] ≥
1.42 by substituting the inequality erf(

√
0.5) ≥ 0.68 into (6).

Hence, it holds that λ1(E[〈a,d〉2|〈a,d〉2 ≥ 0.5]) ≥ 1.42, and

λi

(
E[aaT |〈a,x〉2 ≥ 0.5]

)
= 1, 1 ≤ i ≤ n− 1. Subsequently,

it can be deduced that for λ− < 0 and λ+ > 0, the largest

eigenvalue of λ−E[aaT |〈a,d〉2 ≤ 0.5]+λ+E[aaT |〈a,d〉2 ≥
0.5] is greater than or equal to 1.42λ+ + 0.166λ−, and all

others are λ+ + λ−. Hence, once the sample average matrix
λ−

|I−|
∑

i∈I− aia
T
i + λ+

|I+|
∑

i∈I+ aia
T
i is sufficiently close

to its mean, it becomes possible to estimate d with high

accuracy according to the matrix perturbation lemma in [20,

Corollary 1]. These arguments speak for the effectiveness

of the suggested initialization procedure, whereas the next

theorem quantifies rigorously the estimation error dist(z0,x).
Theorem 1: Let z0 = r̂d̂ with d̂ obtained from (3). For any

given constant δ0 ∈ (0, 1), there exists numerical constants

c0 > 0 and C0 such that the following holds

dist(z0,x) ≤ δ0‖x‖2
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with probability exceeding 1−10 exp(−c0m) when m ≥ C0n.

Proof of Thm. 1 can be found in our journal version [21].

It is worth pointing out that the weak recovery performance

of similar procedures has been studied in [22], which only

provides guarantee for the case of n → ∞.

2) Support recovery: The initialization procedure in (3)

is designed for general vectors x, without exploiting the

structural information that is present in diverse applications.

When the vector is sparse, the required number of data samples

to yield an accurate initialization can be reduced [16]. Next,

we show how to obtain a sparse initialization based on the

procedure discussed in Sec. III-A. Similar to [16], obtaining a

sparse initialization entails first estimating the (block)-support

of the underlying (block)-sparse signal vectors.

Specifically, define random variables Zi,j := ψ2
i a

2
i,j , ∀j ∈

[n]. According to [16, Eq. (16)], the following holds

E
[ ∑
j∈Bb

Z2
i,j

]
= E

[ ∑
j∈Bb

(aT
i x)

4a4i,j

]

= 9B‖x‖42 + 24
∑
j∈Bb

x4
j + 72‖xb‖2‖x‖22. (7)

If b ∈ SB , then xb �= 0, yielding E
[∑

j∈Bb
Z2
i,j

]
> 9B‖x‖42+

72‖xb‖2‖x‖22 in (7). On the contrary, if b /∈ SB , one has

xb = 0, yielding E
[∑

j∈Bb
Z2
i,j

]
= 9B‖x‖42. It is evident that

there is a separation of at least 72‖xb‖2‖x‖22 in the expected

values of
∑

j∈Bb
Z2
i,j for b ∈ SB and b /∈ SB . As long as the

gap 72‖xb‖2‖x‖22 is large enough, the (block)-support set SB

can be recovered exactly in this way.

To estimate the (block)-support SB in practice, compute first

the so-called block marginals

ζb :=
∑
j∈Bb

( 1

m

m∑
i=1

ψ2
i |ai,j |2

)2

, ∀b ∈ Nb

which serves as an empirical estimate of E
[∑

j∈Bb
Z2
i,j

]
. As

explained earlier, the larger ζb is, the more likely is for the

block to be nonzero, namely ‖xb‖2 > 0 [18]. Upon collecting

{ζb}NB

b=1, one can pick the indices associated with the k-largest

values in {ζb}NB

b=1, which form the estimated block-support set

ŜB . Subsequently, an estimate of the support of x denoted as

Ŝ can be determined as Ŝ := {i ∈ Bb | ∀b ∈ ŜB}.
The support estimation procedure is summarized in Steps 2-

4 of Alg. 1. Appealing to [18, Thm. 5.1], Steps 2-4 recover the

support of x exactly with probability at least 1− 6
m provided

that m ≥ C ′
0k

2B log(mn) for some positive constant C ′
0 and

the minimum block

xB
min := min

b∈SB

‖xb‖22

is on the order of (1/k)‖x‖22, namely, xB
min = (C ′′

0 /k)‖x‖22
for some number C ′′

0 > 0.

If the support has been exactly estimated, that is, Ŝ = S ,

one can rewrite ψi = |aT
i x| = |aT

i,ŜxŜ | for all i ∈ [m], where

ai,Ŝ ∈ RkB contains entries of ai whose indices belong to Ŝ;

and similarly for xŜ ∈ Rk. Then, the proposed initialization

procedure in (3) is applied to the dimensionality-reduced data

{(ai,Ŝ , ψi)}mi=1 to obtain

d̂Ŝ := max
z∈RkB

zT
(

λ−

|I−|
∑
i∈I−

ai,Ŝa
T
i,Ŝ +

λ+

|I+|
∑
i∈I+

ai,Ŝa
T
i,Ŝ

)
z.

Subsequently, an estimate of the n-dimensional vector d can

be constructed by zero-padding entries of d̂Ŝ whose indices

are not in Ŝ .

Algorithm 1 Compressive Reweighted Amplitude Flow

1: Input: Data {(ai;ψi)}mi=1, block length B, and block spar-

sity level k; parameters λ− = −3, λ+ = 1, {βi = 0.6}mi=1,

τw = 0.1; and stepsize μ = 1.

2: For b = 1 to NB , compute

ζb :=
∑
j∈Bb

( 1

m

m∑
i=1

ψ2
i |ai,j |2

)2

.

3: Set ŜB to include indices associated with the k-largest

instances in {ζb}NB

b=1.

4: Set Ŝ to consist of indices of Bb for b ∈ ŜB .

5: Compute the principal eigenvector d̂Ŝ ∈ RkB of

λ−

|I−|
∑
i∈I−

ai,Ŝa
T
i,Ŝ +

λ+

|I+|
∑
i∈I+

ai,Ŝa
T
i,Ŝ

where I− := {i ∈ [m] : ψ2
i ≤ r̂2/2} and I+ := {i ∈

[m] : ψ2
i ≥ r̂2/2} with r̂ :=

√∑m
i=1 ψ

2
i /m.

6: Initialize z0 as r̂d̃, where d̃ ∈ Rn is given by augmenting

d̂Ŝ in Step 5 with d̃i = 0 for i /∈ Ŝ .

7: Loop: For t = 0 to T − 1

zt+1 = HB
k

(
zt − μ

m

∑
i∈[m]

wt
i

(
aT
i z

t − ψi
aT
i z

t

|aT
i z

t|
)
ai

)

where wt
i := max

{
τw,

|aT
i zt|

|aT
i zt|+ψiβi

}
.

8: Output: zT .

B. Refinement via iteratively reweighted gradient iterations

Upon obtaining an accurate initial point, successive refine-

ments based on reweighted gradient iterations are effected.

To account for the block-sparsity structure of the wanted

signal vector x, the model-based iterative hard thresholding

(M-IHT) [19] is invoked. To start, recall that the generalized

gradient of the objective function in (2) is [6]

∇�(z) :=
1

m

∑
i∈[m]

(
aT
i z − ψi

aT
i z

|aT
i z|

)
ai (8)

in which the convention aT
i z/|aT

i z| := 0 for |aT
i z| = 0 is

adopted.

With t ≥ 0 being the iteration count and z0 being the initial

point, the M-IHT algorithm proceeds with the following k-

block-sparse hard thresholding, namely

zt+1 = HB
k

(
zt − μ

m
∇�(zt)

)
(9)
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where μ > 0 is a preselected stepsize, and the block-sparse

hard thresholding operator HB
k (ū) : Rn → Rn converts an n-

dimensional vector ū := [ūT
1 . . . ūT

NB
]T into a k-block-sparse

one u := [uT
1 . . . uT

NB
]T such that

ub =

{
ūb, if b ∈ UB

0, if b /∈ UB

where UB consists of indices associated with the k-largest

entities in {‖ūb‖2}NB

b=1.

Unfortunately, the negative gradient −∇�(z) may not drag

the iterate sequence {zt} to the global optimum x because the

estimated sign aT
i z/|aT

i z| in ∇�(z) may not coincide with the

true one aT
i x/|aT

i x| [6]. As such, the update in (9) may not

always reduce the distance of the iterate to the global optimum.

To alleviate the negative influence of the mistakenly estimated

signs, the following truncated gradient ∇�tr(z
t) is adopted in

SPARTA [16]

∇�tr(z
t) :=

1

m

∑
i∈It

(
aT
i z

t − ψi
aT
i z

t

|aT
i z

t|
)
ai (10)

where

It :=
{
1 ≤ i ≤ m

∣∣∣ |aT
i z

t|
|aT

i x|
≥ τg

}
for some preselected truncation parameter τg > 0. It is clear

that ∇�tr(z) is based on data whose associated |aT
i z| are of

relatively large sizes. The reason behind this truncation is that

gradients (summands in (10)) of large |aT
i z|/|aT

i x| provably

point toward the global optimum x with high probability [6].

As also highlighted in [7], this truncation may reject mean-

ingful samples, which hampers the efficacy of ∇�tr especially

when the sample size is limited.

An alternative to the gradient trimming technique is to

assign different weights for different gradients [7], which helps

fusing useful information from all gradients. Specifically, the

following reweighted gradient pursued in [7] proves successful

in PR of general signal vectors

∇�rw(z
t) :=

1

m

∑
i∈[m]

wt
i

(
aT
i z

t − ψi
aT
i z

t

|aT
i z

t|
)
ai (11)

where the weights are suggested as

wt
i := max

{
τw,

|aT
i z

t|
|aT

i z
t|+ ψiβi

}
, ∀i ∈ [m] (12)

for certain preselected parameters τw > 0 and βi > 0 for all

i ∈ [m]. Evidently, it holds that τw ≤ wt
i ≤ 1 for all i ∈ [m],

and the larger the ratio |aT
i z|/|aT

i x|, the larger the weight wt
i .

In this aspect, wt
i reflects the confidence in the i-th negative

gradient pointing toward the global optimum x.

In the context of PR of block-sparse vectors, it is therefore

reasonable to implement the M-IHT based iterations using

reweighted gradients, namely

zt+1 := HB
k

(
zt − μ∇�rw(z

t)
)
. (13)

The proposed block-sparse PR solver is summarized in Alg. 1.

Its exact recovery is established in the next theorem, whose

proof is provided in our journal version [21].

Theorem 2: Let x ∈ Rn be any k-block-sparse (kB � n)

vector with xB
min := (C ′′

0 /k)‖x‖22. Consider noiseless mea-

surements {ψi = |aT
i x|}mi=1 from the real Gaussian model.

If m ≥ C1k
2B log(mn), there exists a constant learning rate

μ > 0, such that the successive estimates zt in Algorithm 1

obey

‖zt − x‖2 ≤ δ0ρ
t‖x‖2, t = 0, 1, . . . (14)

with probability at least 1− c2 exp(−c1m)− 6/m. Here, 0 <
δ0 < 1, 0 < ρ < 1, μ, c1 > 0, c2 > 0, C ′′

0 , and C1 are certain

numerical constants.

Regarding the implications of Thm. 2, two observations are

in order. As soon as m ≥ C1k
2B log(mn), CRAF recovers

exactly k-block-sparse vectors x of non-negligible blocks. This

sample complexity is consistent with the Block CoPRAM

method in [18]. Moreover, CRAF converges linearly to the

global optimum. Expressed differently, it takes CRAF at most

T := O(log(1/ε)) iterations to reach a solution of ε-relative

accuracy.

IV. NUMERICAL TESTS

This section compares CRAF with the state-of-the-art sparse

PR procedures, including SPARTA [16] and CoPRAM [18].

In all experiments, the support S of the true signal vectors

x ∈ R3,000 was randomly chosen. The nonzero entries were

generated using xS ∼ N (0, I). The obtained x was subse-

quently normalized such that ‖x‖2 = 1. The sampling vectors

were generated using ai ∼ N (0, I), 1 ≤ i ≤ m. For SPARTA,

its suggested parameters were used. The parameters of CRAF

were set as λ− = −3, λ+ = 1, {βi = 0.6}mi=1, τw = 0.1, and

μ = 1. For all simulated schemes, the maximum number of

iterations was fixed to T = 1, 000, and all reported results are

averaged over 100 Monte Carlo runs.

The first experiment evaluates the performance of our ini-

tialization relative to that in SPARTA [16] and CoPRAM [18]

for block length B = 1. Figure 1 depicts the average relative

error of the three initialization schemes with the sparsity level

k varying from 25 to 35, and m/k fixed to 30. Clearly, the new

initialization outperforms the other two with large margins.

The second experiment examines the empirical success rates

of CRAF, SPARTA, and CoPRAM for solving the ordinary

compressive PR with B = 1. Each of the 100 Monte Carlo tri-

als is declared a success if the relative error dist(zT , x)/‖x‖2
is less than 10−5. The empirical success rates of CRAF,

SPARTA, and CoPRAM are reported in Fig. 2 with m varying

from 400 to 1, 800. Notably, the curves showcase improved

exact recovery performance of CRAF relative to its competing

alternatives.

The last experiment evaluates the robustness of CRAF

against additive noise in the amplitude measurements

ψi = |aT
i x|+ ηi, 1 ≤ i ≤ m

where {ηi}mi=1 are independently sampled from N (0, σ2). In

this test, the parameters k = 30, B = 1, and m = 1, 600
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Fig. 1: Average relative error for B = 1.
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Fig. 2: Empirical success rate versus m for B = 1, k = 30.

were simulated. Figure 3 depicts the relative errors of the three

approaches versus varying σ2 from 0.1 to 0.6 by 0.1, from

which it is clear that CRAF offers the most accurate estimates

for all noise levels.
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Fig. 3: Average relative error of signal recovery versus the

variance of noise σ2 for B = 1, k = 30, and m = 1, 600.

V. CONCLUSIONS

This paper advocated the compressive reweighted amplitude

flow (CRAF) algorithm for PR of sparse signal vectors. CRAF

starts by estimating the support of the sparse signal vector,

followed by a new spectral procedure to obtain an effec-

tive sparse initialization. To enhance the initial guess, CRAF

proceeds with hard thresholding based iteratively reweighted

gradient iterations. CRAF recovers the sparse signal vectors

exponentially fast when a sufficient number of measurements

become available. Simulated tests showcase the merits of

CRAF relative to state-of-the-art sparse PR solvers.
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