
Comparative Study on Spoken Language
Identification Based on Deep Learning

Panikos Heracleous∗, Kohichi Takai∗, Keiji Yasuda†, Yasser Mohammad‡, Akio Yoneyama∗
∗KDDI Research, Inc., Japan

Email: {pa-heracleous,ko-takai,yoneyama}@kddi-research.jp
†Nara Institute of Science and Technology (NAIST), Japan

Email: ke-yasuda@dsc.naist.jp
‡Artificial Intelligence Research Center, AIST, Japan

Email: yasserm@aun.edu.eg

Abstract—Spoken language identification is the process by
which the language in a spoken utterance is recognized automat-
ically. Spoken language identification is commonly used in speech
translation systems, in multi-lingual speech recognition, and in
speaker diarization. In the current paper, spoken language identi-
fication based on deep learning (DL) and the i-vector paradigm is
presented. Specifically, a comparative study is reported, consist-
ing of experiments on language identification using deep neural
networks (DNN) and convolutional neural networks (CNN). Also,
the integration of the two methods into a complete system is
investigated. Previous studies demonstrated the effectiveness of
using DNN in spoken language identification. However, to date,
the integration of CNN and i-vectors in language identification
has not been investigated. The main advantage of using CNN
is that fewer parameters are required compared to DNN. As a
result, CNN is cheaper in terms of memory and the computational
power needed. The proposed methods are evaluated on the
NIST 2015 i-vector Machine Learning Challenge task for the
recognition of 50 in-set languages. Using DNN, a 3.55% equal
error rate (EER) was achieved. The EER when using CNN was
3.48%. When DNN and CNN systems were fused, an EER of
3.3% was obtained. The results are very promising, and they
also show the effectiveness of using CNN and i-vectors in spoken
language identification. The proposed methods are compared to
a baseline method based on support vector machines (SVM) and
they demonstrated significantly superior performance.

I. INTRODUCTION

Automatic spoken language identification is the process

by which language in a spoken utterance is recognized au-

tomatically. Language identification is an important part of

speech-to-speech translation systems, in multi-lingual speech

recognition, and in the diarization of meetings. It can be

applied in call centers to automatically route incoming calls

to appropriate native speaker operators.

The current study focuses on spoken language identifica-

tion based on deep learning (DL) methods and the i-vector

paradigm. The first method is based on a conventional feed-

forward fully connected neural network, which receives i-

vectors as input features. In contrast, the second method is

based on convolutional neural networks (CNNs) with i-vector

features. However, few studies have presented experimental

results using DL and i-vectors, and to date, the integration

of i-vectors and DL for language identification has not been

investigated exhaustively. Furthermore, in the current study the

DNN-based method is also compared with CNN-based spoken

language identification when i-vector features are used. CNNs

have a different architecture from DNN, and were originally

used in image recognition. Concerning spoken language identi-

fication, CNNs have been used with frame-level input features.

The performance of a spoken language identification system

when i-vector input features are used is, however, still an open

research question.

The current study has been further expanded by investi-

gating the performance of a spoken language identification

system when DNN and CNN are fused into a complete system.

In the current study, the two systems operate in parallel and

the correct language is identified based on the maximum

likelihood of the two individual scores.

II. RELATED WORK

Several studies have investigated spoken language identi-

fication. The approaches presented are categorized based on

the features they employ. Language identification systems are

categorized into the acoustic-phonetic approach, the phonotac-

tic approach, the prosodic approach, and the lexical approach

[1]. In phonotactic systems [1], [2], sequences of recognized

phonemes obtained from phone recognizers are modeled. In

[3], a universal acoustic characterization approach to spoken

language recognition is proposed. The main idea is to describe

any spoken language with a common set of fundamental units,

such as manner and articulation, which are used to build a

set of language-universal attribute models. The vector space

modeling-based phonotactic language recognition approach is

demonstrated in [1] and presented in [4]. The key idea is to

vectorize a spoken utterance into a high-dimensional vector,

thus leading to a vector-based classification problem.

In acoustic modeling-based systems, however, each rec-

ognized language is modeled by using different features.

Although significant improvements in LID have been achieved

from phonotactic approaches, most state-of-the-art systems

still rely on acoustic modeling.

In [5], an early attempt at language identification based

on a neural network is presented. Similarly, neural network-
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based language identification is addressed in [6]. In [7], the

first attempt at language identification using deep learning is

presented. In [8], automatic language identification based on

deep neural networks (DNN) is also presented. The method

shows superior performance compared to i-vector-based [9]

classification schemes when a large amount of data is used.

The method is compared to linear logistic regression, linear

discriminant analysis-based (LDA), and Gaussian modeling-

based classifiers. When limited training data are used, the i-

vector yields the best identification rate. Another method based

on DNN and using deep bottleneck features is presented in

[10]. A method for identification in short utterances based on

long short-term memory (LSTM) recurrent neural networks

(RNN) is presented in [11]. In [12], the problem of language

identification is addressed by using i-vectors with support

vector machines (SVM) [13] and LDA. SVM with local Fisher

discriminant analysis is also used in [14]. Similarly to the

current study, the method is evaluated on the NIST 2015 i-

vector Machine Learning Challenge task. The results obtained

are very similar to those obtained in the current study when

using SVM. In [15], deep neural networks-based language

identification is also presented. The method is also evaluated

on the NIST 2015 i-vector Machine Learning Challenge task.

III. METHODS

A. Data

In the NIST 2015 LRE i-Vector Machine Learning Chal-

lenge task, i-vectors, constructed from conversational and

narrow-band broadcast speech, are given as training, testing,

and development data. The task covers 50 languages and

contains 15000 training i-vectors, 6500 test i-vectors, and 6431

development i-vectors. The training i-vectors are extracted

from speech utterances with a mean duration of 35.15s.

The training data and the test data are labeled, with the

development i-vectors to be unlabeled. The set also includes

i-vectors corresponding to out-of-set languages. In the current

study, only the in-set languages are considered. In particular,

300 training i-vectors and 100 test i-vectors are used for each

of the 50 in-set languages.

B. i-vector Paradigm

Gaussian mixture models (GMM) with universal back-

ground models (UBM) are widely used for speaker recog-

nition. In this scenario, each speaker model is created by

adapting the UBM using maximum a posteriori (MAP) adap-

tation. A GMM supervector is constructed by concatenating

the means of the adapted model. Similar to speaker recog-

nition, GMM supervectors can also be utilized for language

identification.

The main disadvantage of GMM supervectors is the high

dimensionality, which incurs high computational and mem-

ory costs. In the i-vector paradigm, the limitations of high

dimensional supervectors (i.e., concatenation of the means of

GMMs) are overcome by modeling the variability contained

in the supervectors with a small set of factors. Considering

Fig. 1. The architecture of the proposed convolutional neural networks-based
classifier.

automatic language identification, an input utterance can be

modeled as:

M = m + Tw (1)

where M is the language-dependent supervector, m is the

language-independent supervector, T is the total variability

matrix, and w is the i-vector. Both the total variability matrix

and language-independent supervector are estimated from the

complete set of the training data.

C. Classification Approaches

1) Support Vector Machines (SVM): A support vector ma-

chine (SVM) is a two-class classifier constructed from sums

of a kernel function K(.,.)

f(x) =

L∑

i=1

αitiK(x,xi) + d (2)

where the ti are the ideal outputs,
∑L

i=1 αiti = 0, and αi > 0.

An SVM is a discriminative classifier, which is widely used

in regression and classification. Given a set of labeled training

samples, the algorithm finds the optimal hyperplane, which

categorizes new samples. SVM is among the most popular

machine learning methods. The advantages of SVM include

the support of high-dimensionality, memory efficiency, and

versatility. However, when the number of features exceeds

the number of samples the SVM performs poorly. Another

disadvantage is that SVM is not probabilistic because it works

by categorizing objects based on the optimal hyperplane.

Originally, SVMs were used for binary classification. Cur-

rently, the multi-class SVM, a variant of the conventional

SVM, is widely used in solving multi-class classification prob-

lems. The most common way to build a multi-class SVM is

to use K one-versus-rest binary classifiers (commonly referred

to as ”one-versus-all” or OVA classification). Another strategy

is to build one-versus-one classifiers, and to choose the class

that is selected by the most classifiers. In this case, K(K-1)/2
classifiers are required and the training time decreases because

less training data are used for each classifier.

2) Convolutional Neural Networks (CNN): A deep neural

network is a feed-forward neural network with more than one

hidden layer. The units (i.e., neurons) of each hidden layer

take all outputs of the lower layer and pass them through

an activation function. A convolutional neural network [16],

[17] is a special variant of the conventional network, which
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introduces a special network structure. This network structure

consists of alternating convolution and pooling layers.

Convolutional neural networks have been successfully ap-

plied to sentence classification [18], image classification [19],

facial expression recognition [20], and in speech emotion

recognition [21]. Furthermore, in [22], bottleneck features ex-

tracted from CNN are used for robust language identification.

In the proposed CNN architecture, four convolutional layers

with 64 filters and ReLu activation function were used. Each

convolutional layer is followed by a max-pooling layer with

width = 2. On top, a fully connected Softmax layer was used.

The batch size was set to 64, and the dropout probability was

set to 0.25. The epochs number was 200. Figure 1 shows the

architecture of the proposed method.

3) Deep Neural Networks (DNN): Deep learning is behind

several of the most recent breakthroughs in computer vision,

speech recognition, and agents that achieved human-level

performance in several games like go, poker etc. In the current

study, four hidden layers with 64 units and ReLu activation

function are used. On top, a Softmax layer with fifty classes is

added. The number of batches is set to 512, and 500 epochs

are used.

D. Evaluation measures

In the current study, the equal error rate (EER) (i.e., equal

false alarms and false rejections) and the cost function are

used as evaluation measures. Considering that in the current

study only the in-set languages are being recognized, the cost

function defined by NIST is modified as follows:

cavg =
1

N

N∑

k=1

Perror(k) · 100 (3)

where

Perror(k) =
No. of errors for class k

No. of trials for class k
(4)

where N is the number of the target languages. In addition, the

detection error tradeoff (DET) curves, which show the function

of miss probability and false alarms, are also given.

IV. RESULTS

These sections present the experimental results for auto-

matic language identification using DNN, CNN, and SVM.

Furthermore, the results obtained when integrating the classi-

fication methods are also presented. The experimental results

show the performance of the proposed methods compared

to SVM for the identification of 10, 20, 30, 40, and 50 in-

set languages using the NIST 2015 LRE i-Vector Machine

Learning Challenge task.

Table I shows the costs for 10, 20, 30, 40, and 50 target

languages, respectively. The results demonstrate that in most

cases, the lowest costs are incurred when CNN is used. For

the identification of 10 target languages, the cost when using

CNN was 4.6%, when using DNN the cost was 4.8%, and

when using SVM a 5.4% score was obtained. In the case of

identifying 50 languages, the costs were 13.7%, 13.6%, and

TABLE I
COSTS FOR DIFFERENT LANGUAGE SUBSETS OF NIST LRE 2015

No of Languages Classification method
DNN CNN SVM

10 4.8 4.6 5.4
20 10.0 9.7 10.7
30 11.1 11.1 13.9
40 13.4 13.3 15.7
50 13.6 13.7 18.6

TABLE II
EQUAL ERROR RATES (EER) FOR DIFFERENT LANGUAGE SUBSETS OF

NIST LRE 2015

No of Languages Classification method
DNN CNN SVM

10 1.89 2.00 2.42
20 3.30 3.30 4.13
30 3.02 3.02 4.47
40 2.95 3.06 4.65
50 3.55 3.48 5.20
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Fig. 2. DET curves for ten target languages.

18.6% when using CNN, DNN, and SVM, respectively. The

results obtained using DNN and CNN are very promising,

and superior to those obtained in similar studies. The highest

costs were incurred using SVM, demonstrating that SVM is

less effective for this task.

Table II shows the EER when using the five subset target

languages. As shown, when using the CNN- and DNN-based

methods, the lowest EER is obtained. For the identification

of 10 target languages, EERs of 2.0%, 1.89%, and 2.42%

are obtained when using CNN, DNN, and SVM, respectively.

In the case of 50 target languages, the EERs are 3.48%,

3.55%, and 5.2% when using CNN, DNN, and SVM clas-

sifiers, respectively. The results show that CNN- and DNN-

based methods have higher robustness in terms of EER in

relation to the number of target languages. Figure 2 and

Figure 3 show the DET curves in the case of 10 and 50 target

languages, respectively. As shown, superior performance is

obtained using the proposed approaches. The graphs also show

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2281



0.1 0.2 0.5 1 2 5 10 20 40
False Positive Rate (FPR) [%]

0.1
0.2

0.5

1

2

5

10

20

40

Fa
ls

e 
N

eg
at

iv
e 

R
at

e 
(F

N
R

) [
%

]

DNN
CNN
SVM

Fig. 3. DET curves for the fifty target languages.

TABLE III
COST USING TRAINING DATA OF DIFFERENT SIZES

No. of training Classification method
i-vectors DNN CNN SVM

2500 26.7 23.8 27.9
5000 22.3 20.8 23.1
7500 19.6 20.0 22.0

10000 18.0 19.1 20.9
12500 18.0 17.7 20.1
15000 13.6 13.7 18.6

TABLE IV
EQUAL ERROR RATES (EER) USING TRAINING DATA OF DIFFERENT SIZES

No. of training Classification method
i-vectors DNN CNN SVM

2500 5.9 5.5 8.3
5000 4.7 4.5 6.7
7500 4.3 4.2 6.4

10000 3.9 4.0 6.1
12500 3.8 3.9 5.8
15000 3.6 3.5 5.2

that when CNN and DNN are used, the performance is highly

comparable, and superior to SVM.

To investigate the effect of training data size when using the

three classifiers, an experiment was conducted using training

data of reduced size. Table III shows the costs incurred in

this case. As shown, the DNN and CNN classifiers show the

lowest costs, followed by the SVM. The results also show that

by increasing the training data, a lower cost is incurred. When

using 50 training vectors per language, costs of 23.8%, 26.7%,

and 27.9% costs are incurred in the case of CNN, DNN, and

SVM, respectively. By increasing the number of training i-

vectors, the costs decrease.

Table IV shows the EERs when a reduced amount of

training data is used. As shown, in most cases the lowest EERs

are obtained when using CNN. In the case of 50 training i-

vectors per language, the EERs are 5.5%, 5.9%, and 8.3%

using CNN, DNN, and SVM, respectively.

TABLE V
EQUAL ERROR RATES (EER) USING FUSION OF DIFFERENT CLASSIFIER

No. of languages Classification method

DNN+CNN DNN + SVM CNN + SVM

10 1.80 1.91 1.87

50 3.39 2.84 2.79
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Fig. 4. DET curves for the fifty target languages when classifiers are fused.

The results obtained are very promising and show the

effectiveness of using deep learning with i-vectors for language

identification. Furthermore, the results justify the use of CNN

along with i-vectors for this task, even in the case of limited

training i-vectors.

In the current study, the performance of a language identi-

fication system when several classifiers are fused was also in-

vestigated. The classifiers operate in parallel and the language

is hypothesized based on the classifiers’ individual scores.

Considering two classifiers, the total S score is computed as

follows:

S = αsA + (1− α)sB (5)

where sA and sB are the scores obtained from the two

classifiers, and α is a weight. In these experiments, the weight

was adjusted empirically to 0.5 (i.e., equal importance of the

two classifiers).

Table V shows the EERs when the classifiers are integrated

in a parallel mode, and the final decision is made by adding the

two individual scores. As shown, by using fusion, lower EERs

are obtained compared when classifiers are used alone. In the

case of 10 target languages, the lowest EER is obtained when

CNN and DNN classifiers are integrated. In this case, an EER

of 1.80% is achieved. In the case of 50 target languages, the

lowest EERs are obtained when SVM is integrated with DNN

and CNN. Specifically, when SVM is integrated with CNN

the EER is as low as 2.79%. These results are interesting and

promising and show the effectiveness of using fusion in spoken

language identification compared to single classifiers. Figure 4
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shows the DET graphs in the case of 50 target languages. As

shown, when fusion is used, superior performance is obtained.

V. DISCUSSION

This study focused on automatic language identification us-

ing the NIST 2015 LRE i-Vector Machine Learning Challenge

task. Although many studies have investigated this area, prob-

lems remained. Recent advances in classification and feature

extraction methods have resulted in significant improvements

in identification rates. Modern approaches include the use

of the i-vector paradigm along with the very popular and

widely used SVM classifiers. Other studies focus on deep

neural networks or other conventional approaches such as

Gaussian mixture models and supervector-based identification

methods. In the current study, spoken language identification

based on CNN and DNN classifiers and i-vectors was ex-

perimentally investigated. The very few studies addressing

language identification based on this framework, left this

research area wide open. Moreover, in the current study CNN

and i-vectors were integrated and compared using a DNN-

based approach. A limitation of the current study was the very

small amount of data used in the experiments. For each target

language, 300 training vectors were used, and this may not be

a sufficient number for high performance using deep learning-

based classifiers. On the other hand, the proposed method

was evaluated on the NIST 2015 LRE task, and the available

data are still sufficient to demonstrate the effectiveness of the

proposed methods in spoken language identification.

VI. CONCLUSION

In this study, two methods based on deep learning for

language identification were experimentally investigated. Fur-

thermore, the integration of different classifiers was also

addressed. The methods are based on DNN and CNN using

i-vector input features and were evaluated on the NIST 2015

LRE i-Vector Machine Learning Challenge task. For the iden-

tification of the 50 in-set languages, EERs of 3.6% and 3.5%

were obtained using DNN and CNN, respectively. When CNN

was fused with SVM, an EER of 2.79% was achieved. When

DNN was fused with SVM, an EER of 2.84% was obtained.

The results are promising and demonstrate the effectiveness

of CNN and DNN in spoken language identification when i-

vectors are used. Furthermore, the fusion of different classifiers

resulted in additional improvements.
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