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Abstract—Near infrared spectroscopy (NIRS) is an emerging
field of brain study. From an engineering perspective, the absence
of a ground truth signal or a model for producing synthetic
data has hindered understanding of the underlying elements of
this signal and validating of existing algorithms. In this paper, a
dynamic model of artificial NIRS signal is proposed. The model
incorporates arterial pulsations, its possible frequency drifts,
Mayer waves, respiratory waves and other very low frequency
components. Parameter selection and model fitting has been
carried out using measurements from a NIRS database. To
be general in the process of parameter selection, our dataset
included 4 NIRS devices and 256 channels for each subject,
covering all the scalp and therefore providing realistic measures
of the varying parameters. Results are compared with the real
data in time and frequency domains, both showing high level of
resemblance.

Index Terms—near infrared spectroscopy, synthetic signal,
brain hemodynamics

I. INTRODUCTION

Near infrared spectroscopy (NIRS) is an emerging field
of brain study. It uses the near infrared (690nm to 900nm)
portion of the electromagnetic spectrum to emit light into
the brain. The light is scattered and a very small portion
(approximately one out of 109 photons) finds its way to the
light detectors placed 2−4cm away from the source [1]. Over
this spectrum light is mainly absorbed by oxygenated and de-
oxygenated blood which have different absorption coefficients.
Therefore, using at least two wavelengths one can separate
these chromophores as indicators of brain activation [1]. NIRS
has several advantages compared to other methods of brain
study. Low cost, portability and high temporal resolution are
the features making NIRS a worthy alternative to the well-
known functional magnetic resonance imaging (fMRI). NIRS
also offers higher spacial resolution than electroencephalog-
raphy (EEG), allowing regional studies. NIRS has already
found its place in scientific research into cerebrovascular
disease, cerebral arterial pulsation, functional connectivity,
brain computer interface and event-related fast optical signals
[2]–[4].

Depending on the application, various signal processing
procedures are adopted to extract solely the desired signal.
This process would benefit from knowledge of all NIRS signal
components including instrumental noise, arterial pulsation,
hemodynamic response, respiratory waves, Mayer waves and
motion artifacts [4], [5]. Currently, new biomedical signal
processing algorithms are generally evaluated using data from
only a few participants and with a fixed instrumental setting.
In addition, rarely any database is available for more compre-
hensive signal processing studies. Therefore, realistic artificial
NIRS signals can facilitate the evaluation of these algorithms.

In this paper, we present a novel model for generating
artificial NIRS time series which has the same time and fre-
quency features as the real intensity-normalized NIRS signals.
The model encompasses arterial pulsations, instrumental noise
and low frequency components. By adjusting the mean and
standard deviation of the heart rate, sampling frequency and
also frequency-domain features like power ratio of different
bandwidths, proposed model can simulate realistic NIRS sig-
nals.

II. SIGNAL MODELING

In this section we present the elements of the proposed
model and how they are combined. Throughout the paper,
any signal from real NIRS measurements will be noted by
a superscript check e.g., š.

Our proposed model describing the NIRS signal encom-
passes the following components,

s =
[
aAP 1 aLF

] sAP
sGN
sLF

+ 1. (1)

Where s is the NIRS time series vector formed with the
arterial pulsation signal, sAP, additive white Gaussian noise,
sGN, and low frequency components, sLF.

[
aAP 1 aLF

]
is

the N×3 matrix of corresponding amplitudes, where N is the
number of realizations. 1 is a N ×1 vector of ones. Typically,
experimental NIRS data is normalized to a mean of 1 and we
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do the same in this model. N is selected based on the desired
sampling frequency, fs, and signal length in seconds.

A. Arterial Pulsation Signal

Arterial pulsations (AP) are the most distinguishable com-
ponents in the NIRS signal with high power. These signals
are the footprint of massive changes in blood volume as the
heart pumps and blood is forced into cerebral arteries. This
volume of blood absorbs a larger portion of the optical signal
and a decrease of detected light intensity becomes evident. AP
signals are used to extract pulse transit time and cerebrovas-
cular compliance in order to assess cerebral arterial health [4].
There are several factors such as the environment temperature,
body position, emotional state, exercise and medicine use that
can alter the heart rate. In our model we assume a stationary
participant with no change in these factors. However, two key
elements continuously influence the heart rate. It is known that
heart rate accelerates during inspiration and slows down during
expiration. This phenomenon is referred to as respiratory sinus
arrhythmia (RSA) [6]. In addition, Mayer waves, for which
the cause is debatable, result in small frequency drifts in the
electrocardiogram (ECG) signal [7]. Due to the same nature of
AP signals in ECG and NIRS, we assume that these frequency
drifts are also present in the NIRS signals.

We define sAP(n) as a sinusoidal with a time-varying
instantaneous frequency function, f(n), and random phase,
φ0. That is,

sAP(n) = sin

[
2π

n∑
i=0

(Hmean +Hstdf(i)) + φ0

]
. (2)

Where Hmean and Hstd are the heart rate mean and standard
deviation in Hertz, respectively. To model the mentioned
frequency drifts, we use a similar concept to the “RR interval”
used in the ECG signal analysis. R peaks are the most
distinguishable peaks in the ECG signal and RR peak-to-peak
intervals are defined as the time between consecutive R peaks.
Similarly, we define p(n) as the instantaneous frequency at
time n (which can be estimated in a real signal by measuring
the peak-to-peak interval in a local window around time
point n). Now, Respiratory and Mayer drifts can be modeled
based on a previously established method proposed to produce
synthetic electrocardiograph (ECG) signals [7]. The power
spectrum of p(n) is described with two components as,

P (f) =

2∑
i=1

c2i√
2πσ2

i

exp

(
(f − fi)2

2σ2
i

)
. (3)

Where fi, σi and ci represent the center frequency, standard
deviation and power of the frequency drift, respectively of
Mayer signal (i = 1) and respiratory signal (i = 2). Taking
the inverse Fourier transform of

√
P (f), using random phase,

p(n) is generated as,

p(n) = {F−1
[√

P (f)ejθ
]
, θ v U [0, 2π)}. (4)

Where F−1 is the inverse Fourier operator and U is the
uniform distribution. For simplicity, the Fourier transform is

always done with the sampling frequency of 10 and then the
signal is up-sampled to the desired sampling frequency, fs.
Having the instantaneous period time series, p(n), we calculate
the time-varying frequency function as,

f(n) =
1

p(n)
. (5)

f(n) is then normalized to zero mean and unit variance to be
used in (2).

B. White Gaussian Noise

NIRS signals usually contain high amounts of white Gaus-
sian noise (WGN) originating from instruments in the mea-
surement site. As the name suggests, WGN is characterized
as uniformly distributed in the frequency domain and therefore
it is easily detected in bandwidths which are clear from any
other known components. This feature will be used to set the
noise power. In mathematical terms,

sGN(n) v N (0, N), (6)

where N is the normal distribution with zero mean and
variance of N . An adequate amount of noise power, N , needs
to be selected to obtain a realistic model. For this purpose, we
use a power-ratio factor. Assuming a known power ratio over
specific bandwidths of the final signal, N is increased until
the desired ratio is reached.

First we define the power ratio function, Ψ, of two arbitrary
discrete signals, x with length N and y with length of M as,

Ψ(x, y) = 10 log10

[
1
N

∑N
n=1 x

2(n)
1
M

∑M
n=1 y

2(n)

]
, (7)

where Ψ is in decibels (dB).
Then, knowing the heart beat frequency, the AP signal is

extracted with an infinite impulse response (IIR) bandpass
filter with the bandwidth of 0.4Hz centered around the heart
rate. The result is called wAP. Another IIR filter is applied
to the frequency band of 3-10Hz. Under the assumption that
this spectrum contains only white Gaussian noise. The output
signal is called wGN. We define,

ψGN = Ψ(wGN, wAP). (8)

Finally, to add sufficient amount of WGN, the noise power,
N , is increased over an iterative process until,

ψGN = Q. (9)

This strategy will help us implement realistic values for noise
power.

C. Low Frequency Components

“Low frequency components” or “LF components” are more
general terms used to refer to the two main elements of the
NIRS signals. First, the Mayer and the respiration waves at
around 0.1 and 0.25Hz. Second, the very low frequency (VLF)
components at less than 0.1Hz.
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1) Mayer and Respiratory Waves: These two elements are
also present in NIRS signals as reported in the literature [5].
To clarify, in Section II-A, we mentioned the frequency drifts
that these signals cause to the heart rate and here, we discuss
the amplitude changes of NIRS signals caused by the same
sources. Thus, we generate p1(n) as per (4) (with a different
realization of θ), then normalize it to zero mean and unit
variance. We define

sMR(n) = p1(n), (10)

which will be added to other low frequency components
discussed in this section.

2) Very Low Frequency Components: Very low frequency,
less than 0.1Hz, components of the NIRS signal correlate
with similar components in blood-oxygenation level dependent
(BOLD) functional magnetic resonance imaging (fMRI) data
[8]. Although the source of these signals is unclear, they have
thought to be associated with changes in vascular dilation,
vaso-motion, and Mayer waves [8]. We take advantage of the
correlation between VLF BOLD and NIRS by adopting signal
processing approaches proposed in the literature to model the
low frequency components in the BOLD signal [9].

The LF part of our synthetic model is defined as,

sLF(n) = sMR(n) +
K∑
k=1

A(k) cos(2πφ(k)n). (11)

Where sMR(n) represents Mayer and respiration amplitude
changes. K is the number of VLF components. A is a 1×K
vector of amplitudes. φ(k) = f1 + (f2− f1)/(K− 1).(k− 1),
with f1 and f2 being the low and high frequency limits of the
VLF elements.

The final model of the synthetic NIRS signal depends on
total of sixteen tunable parameters. Sampling frequency, six
variables for constructing P (f) in (3), heart rate parameters,
Q for the Gaussian noise, four for determining K, A and φ
in (11), and two amplitude parameters in (1). In the following
we set realistic values for each of them.

III. PARAMETER ESTIMATION

In this section we discuss the issue of proper parameter
selection for our proposed model. For some variables, we
have used the values suggested in the literature. However, for
the others, a NIRS dataset has been used for the parameter
selection.

A. Dataset

Our data consists of 5 adult participants for whom 30
seconds of baseline resting data were recorded. The setup
montage consisted of 16 detectors each crossed with 16
time multiplexed sources (half of the sources operating at
690nm and half at 830nm), making total of 256 channels.
Four frequency domain NIR spectrometers (ISS ImagentTM,
Champaign, Illinois) were operating simultaneously with the
rate of 39.0625Hz for data acquisition.

Participants were recruited from the Champaign-Urbana
community, were paid for their participation, and signed

informed consent in accordance with the University of Illinois
at Urbana-Champaigns Institutional Review Board.

B. AP Parameters (f1,f2,c1,c2,σ1,σ2,aAP,Hmean,Hstd)

For the arterial pulsation signal, default values of mean and
standard deviation of the heart rate are Hmean = 60bpm (i.e.,
1Hz) and Hstd = 5bpm (i.e., ∼ 83mHz), respectively [7]. In
(3), the Mayer waves are centered at f1 = 0.1 and with the
normal breathing rate of 12-18 breath per minute, f2 is set to
0.25Hz [7]. The value of 0.029Hz have been chosen for the
standard deviations σ1 and σ2 and the value of 0.029 have
been chosen for the power factors c1 and c2 based on the
measurements from the dataset.

The AP signal is the main component of our synthetic
model, and other elements are normalized based on the AP.
Therefore, the amplitude of this signal is set to the constant
value of aAP = 0.01, based on the intensity-normalized data
from the dataset.

C. WGN Variance and Q

As mentioned in Section II-B, the noise power will be tuned
by the power ratio factor, Q. We have used our dataset to
measure the same parameter for the real data. Assuming that
w̌AP and w̌GN are formed from the real data with the same
filtering process explained in Section II-B, we can calculate

ψ̌GN = Ψ(w̌GN, w̌AP). (12)

ψ̌GN will be the realistic values of Q in (9). Selecting channels
with the optimum source/detector distance (i.e., 2 to 4cm,
which account for the total of 594 channels), we fit a nor-
mal distribution, N (µ, σ), to the measured ψ̌GN values. The
resulted distribution is N (−6.69, 7.27), which will be used to
acquire realistic values for the power ratio parameter, Q.

D. LF Parameters (K, A, aLF)

Based of our simulations and visual validation of time
domain and LF bandwidth in the frequency domain we have
chosen the default value of 20 for the number of VLF
components, K, in (11). The vector of amplitudes, A, has
random numbers uniformly chosen from [−1, 1]. For Φ, f1
and f2 are set to 0.01Hz and 0.09Hz, respectively to cover the
LF bandwidth up until the Mayer frequency.

In order to set aLF as a realistic LF signal power in our
model, we have used the power-ratio strategy of Section II-B.
Using the dataset, an IIR bandpass filter is applied to the
frequency band of [0.01-0.26]Hz (i.e., the LF band), producing
w̌LF, then the power ratio for the low frequency signal is
defined as,

ψ̌LF = Ψ(w̌LF, w̌AP), (13)

Where w̌AP is described in III-C. Having the realistic ψ̌LF
values from the optimally distanced source/detector pairs,
we fit a normal distribution to these values. The resulted
distribution is N (3.30, 11.51), which will be used to acquire
realistic values for the power ratio parameter, ψLF (defined as
(13) for the synthetic signal). After an appropriate value is set
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TABLE I
MODEL PARAMETERS

Parameter Literature Dataset Default
Device fs — 39.0625Hz User-defined

AP

f1 100mHz [118, 110, 101, 108, 95]mHz 100mHz
f2 250mHz [203, 180, 175, 203, 190]mHz 250mHz
c1 c21/c

2
2 = 0.5

[26, 33, 20, 28, 42]× 10−3 29× 10−3

c2 [23, 33, 26, 25, 33]× 10−3 29× 10−3

σ1 10mHz [13, 34, 25, 32, 38]mHz 29mHz
σ2 10mHz [15, 38, 26, 32, 32]mHz 29mHz
aAP — 0.01 0.01
Hmean 60bpm (1Hz) [61, 58, 89, 72, 62]bpm 60bpm
Hstd 83mHz [55, 50, 70, 58, 68]mHz 83mHz

WGN Q — N (−6.69, 7.27) N (−6.69, 7.27)

LF

K — 20 20
A U [−1, 1] — U [−1, 1]
f1 0.01Hz — 0.01Hz
f2 0.09Hz — 0.09Hz
ψLF — N (3.30, 11.51) N (3.30, 11.51)

for ψLF, a non-linear least-squares minimization problem is
solved to find the right aLF for the LF components.

All the model parameters are summarized in Table I with
the values suggested by the literature and the values measured
from the dataset. The physiological values like the mean and
standard deviation of the heart rate and Mayer and respiration
frequencies measured from the dataset fall within their typical
intervals suggested by the literature. However, the differences
between the reported values for c1, c2, σ1 and σ2 of the AP
signal are presumed to be the result of differences between
ECG and NIRS. Thus, the default values for these parameters
(last column of Table I) are based on the measurements from
the dataset.

IV. MODEL VALIDATION

Results of the proposed method for producing synthetic
intensity-normalized NIRS signals are presented in this sec-
tion. We compare the signal generated by the model with two
real signals taken from our dataset. The model parameters have
been set to default as mentioned in Table I, except the three
values, Q, ψLF and heart rate that vary considerably among
subjects or among the different channels of the same subject.
These parameters are set to the same values derived from the
real signal used for comparison. Fig. 1 (a) shows 15 seconds
of resting state data from the dataset described in section
III-A. Using the data shown in Fig. 1 (a), the parameters Q,
ψ̌LF and heart rate were measured as -3.97dB, 4.18dB and
89bpm, respectively. Fig. 1 (b) is the 15-second sample of a
synthetic signal formed using these values. Moreover, Fig. 1
(c) compares the two signals in the frequency domain. Another
example is illustrated in Fig. 2, for which the parameters Q,
ψ̌LF and heart rate were measured as 7.85dB, 20.35dB and
61bpm, respectively. The sampling frequency of the model
is set to 39.0625Hz, same as the dataset. The results show
that the outputs of the proposed model closely match the real
measurements.

0

Fig. 1. (a) Sample from dataset: subject 3, 40mm source/detector distance,
830nm wavelength (b) synthetic signal (c) power spectrum.

V. DISCUSSION

In order to model such complicated signals, assumptions
should be made to simplify the process while holding the key
features and components. Assumptions made in this paper are,

• The frequency drifts of the arterial pulsation signal have
the same characteristics as the ECG-RR interval signal.
This assumption holds firstly, based on the nature of the
AP signal discussed in II-A and secondly, based on the
analysis done by [4], [10] which have simultaneous ECG
and NIRS measurements.

• The effect on signal amplitude of Mayer and respiratory
amplitude changes can be modeled by a Gaussian func-
tion in the frequency domain. This assumption is based
on the inherent natural behavior of the physiological phe-
nomena. Similar assumption is made in [7] for modeling
the frequency drifts of the same signal components.

• Mayer, respiratory and very low frequency waves can be
combined into one component (i.e, the low frequency
component) to be described with a single amplitude
parameter, aLF. Our data analysis show that a good level
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Fig. 2. (a) Sample from dataset: subject 1, 31mm source/detector distance,
690nm wavelength (b) synthetic signal (c) power spectrum.

of accuracy can be achieved with this method. However,
simultaneous ECG, respiration and NIRS monitoring can
help in better understanding of these components and
possibly separating them.

• We have assumed that the frequency drifts and the ampli-
tude changes caused by the Mayer and respiratory waves
are not synchronized and therefore different realizations
of θ in (4) have been used for each component. This
assumption has been made since the nature of those
components have not yet been explored for NIRS signals.

The hemodynamic response function indicates the oxy- and
deoxy-hemoglobin responses in NIRS signals during certain
cognitive tasks. The nature of this signal has been investigated
thoroughly in the literature using data from functional MRI
BOLD (blood oxygen level dependent), [11], [12] and NIRS,
[13]. Therefore, synthetic hemodynamic response function
can be easily added to the model to simulate a specific
experimental paradigm; procedures are explained in literature
[13], [14].

The current model is limited to only being tested by the ISS
Imagent NIRS which is a frequency-domain device. A more

comprehensive study would test and adjust the parameters to
other frequency-domain or continuous wave devices.

VI. CONCLUSION

In this paper a novel method for generating synthetic NIRS
signal is proposed. The model has low-frequency elements,
arterial pulsations, Mayer and respiration waves. Appropriate
default values based on the literature or probability distribution
functions based on the real measurements have been proposed
for deriving the required elements. Results of synthesized
data are compared in time and frequency domain with the
real NIRS measurements, which indicates the accuracy of the
proposed model. The model can be used to investigate different
signal processing algorithms proposed for NIRS data analysis.
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