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Abstract—The conjugate gradient (CG) adaptive filtering
algorithm is an alternative to the more widely used Recursive
Least Squares (RLS) and Least Mean Square (LMS) algorithms,
where the former requires more computations, and the latter
leads to slower convergence. In recent years, some adaptive
filtering algorithms have been equipped with data selection
mechanism to classify if the data currently available consists of
an outlier or if it brings about enough innovation. In both cases
the data could be discarded avoiding extra computation and
performance degradation. This paper proposes a data selection
strategy to the CG algorithm and verifies its effectiveness in
simulations utilizing synthetic and real data.

I. INTRODUCTION

The conjugate gradient optimization algorithms aim at

minimizing approximately quadratic functions by reducing

the cost function through line searches in linear independent

vector directions [1]-[2]-[7]-[12]-[13]-[14]. Typically online

estimation demands fast convergence, low computational

complexity, as well as small misadjustment. In highly corre-

lated input signal situations, the RLS algorithms are known to

provide faster convergence than the LMS-like algorithms, but

the computational cost of RLS might be considered high [8].

An underrated compromise solution is Conjugate Gradient

(CG) method [1]. When CG is adapted to streaming adaptive

filtering, it attains fast convergence and small misadjustment

in comparison to the RLS algorithm [3]-[4]. The CG algo-

rithm does not require matrix inversion, which is another

attractive feature. A special case of CG can arise from the

Majorize-Minimize Subspace algorithm [5] by restricting the

minimization space to the gradient subspace spanned by a

small number of vectors, which are the conjugate directions.

In this work, we propose the DS CG algorithm which

incorporates only innovative data to the adaptation process,

avoiding the use of outliers and non-innovative information.

The data selection is achieved by prescribing a probability

of update that establishes the threshold level to classify the

data quality. This parameter is utilized in the MSE inherent

to the CG algorithm. A data selective (DS) scheme based

on set-membership aproach was previously proposed in [6].

Nevertheless, unlike the set-membership adaptive filtering

algorithms which provide a set as solution [8]-[9]-[15], the

proposed DS-CG algorithm provides a point solution at each

iteration along the line of [10].

The structure of the paper is as follows. Section 2 reviews

the online CG adaptive filtering algorithm and discusses how

to estimate the MSE after convergence. Section 3 shows how

to configure a data-selection strategy by prescribing a prob-

ability of update to determine the error thresholds defining

the data innovation. Section 4 presents simulation results

to corroborate the validity of proposed strategy. Section 5

includes some concluding remarks.

II. THE ONLINE CONJUGATE GRADIENT

In the adaptive filtering theory, the general objective func-

tion of the coefficients aims at minimizing the following cost

function:

min
1

2
w(k)T Rw(k) − pT w(k) (1)

in which R is the N × N autocorrelation matrix of the

input signal, p is the cross-correlation between the input and

reference signals, and w(k) is the adaptive coefficient vector.

Finding the solution of equation (1) corresponds to solve the

linear equation:

Rw(k) = p (2)

in which we can apply the CG method. In this method, the

coefficient vector can be obtained through equation (3) by a

linear combination of the directions c(i) for i = 0, . . . , N−1
which present R-conjugacy, that is, cT (i)Rc(j) = 0, for all

i 6= j.

wo =
N−1
∑

i=0

α(i)c(i) (3)

By premultiplying equation (3) by cT (k)R, one can achieve

the expression for the constant α in the kth iteration :

α(k) =
cT (k)p

cT (k)Rc(k)
(4)

due to conjugate definition and by replacing Rwo = p.

Equation (3) can be evaluated as an iterative process in

which a portion α(k)c(k) is added at the kth step. In this

way, we can express the coefficient update as follows:

w(k) = w(k − 1) + α(k)c(k) (5)
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As mentioned in [11], after N steps the CG algorithm yields

convergence, that is, w(N) = wo, so that we can reach

equation (6) from (5).

w(N) − w(0) = wo − w(0)

= α(0)c(0) + . . . + α(N − 1)c(N − 1)
(6)

In a similar way, one can premultiply equation (6) by cT (k)R
and after some manipulations it is possible to reach another

expression for α(k) in equation (7). Observe that such an

expression can be evaluated without calculating the cross-

correlation vector p, resulting in less computational error.

α(k) =
cT (k)g(k)

cT (k)Rc(k)
(7)

In the above equation, g(k) = p − Rw(k) is the negative

gradient of the objective function and can be evaluated as:

g(k) = g(k − 1) − α(k)Rc(k) (8)

Thus, the next conjugate direction c(k + 1) can be obtained

as the current negative gradient g(k) corrected by a term

comprising a linear combination of the previous direction

vectors:

c(k + 1) = g(k) + β(k)c(k) (9)

in which the constant β(k) is calculated as in equation (10)

in order to guarantee R-conjugacy and improve performance

as well.

β(k) =
(g(k) − g(k − 1))T g(k)

gT (k − 1)g(k − 1)
(10)

As observed in [4], the estimation of the matrix R and vector

p can be both computed using the exponentially decaying

window, giving rise to equations (11) and (12), respectively.

R(k) = λR(k − 1) + x(k)xT (k) (11)

p(k) = λp(k − 1) + d(k)x(k) (12)

Both estimations are also employed in RLS algorithm where

λ represents a forgetting factor.

By applying the line search method as done in [4], a new

more attractive expression for α(k) can be achieved:

α(k) = η
cT (k)g(k − 1)

cT (k)Rc(k)
(13)

with (λ−0.5) ≤ η ≤ λ to assure convergence. From equations

(5), (11) and (12), we can obtain another expression for the

negative gradient g(k):

g(k) = p(k) − R(k)w(k)

= λp(k − 1) + d(k)x(k)

−[λR(k − 1) + x(k)xT (k)][w(k − 1) + α(k)c(k)]

= λg(k − 1) − α(k)R(k)c(k) + x(k)e(k)

(14)

where e(k) = d(k) − xT (k)w(k − 1).

III. DATA SELECTION STRATEGY

In many applications based on adaptive Filtering, a certain

MSE level can be acceptable, so that updating the filter

coefficients 100% of time may be avoided. Thus, only the

suitable data under some necessary conditions leads to an

update of the filter coefficients, reducing the computational

cost. Such a method presented as Data Selection in [10]

will be applied here in order to develop the Data Selective

Conjugate Gradient (DSCG) algorithm.

In both system identification and prediction problems,

which are analyzed in this work, we can formulate the filter

output signal as:

y(k) = wT (k)x(k) (15)

where x(k) = [x0(k) x1(k) . . . xN−1(k)]T is the input

signal and w(k) = [w0(k) w1(k) . . . wN−1(k)] is the filter

coefficients. From the desired signal d(k), one can compute

the error e(k) as

e(k) = d(k) − w(k)T x(k) = d(k) − y(k) (16)

where d(k) will be different for each application.

In the system identification application, the desired signal

is the output of the unknown system and can be formulated

as

d(k) = wo
T (k)x(k) + n(k) (17)

where wo(k) is the optimal coefficient and n(k) is AWGN

with zero mean and variance σ2
n.

By substituting equation (17) in (16), the MSE can be

expressed as:

ξ(k) = E[e2(k)] = E[n2(k)] − 2E[n(k)∆wT (k)x(k)]

+ E[∆wT (k)x(k)xT (k)∆w(k)]
(18)

where we define ∆w(k) = w(k) − wo. As the noise and

coefficients are uncorrelated, the second term in (18) is zero.

Thus obtaining the following expression for the MSE

ξ(k) = σ2
n + ξexc(k) (19)

where ξexc(k) is the excess MSE and E[n2(k)] = σ2
n.

By knowing that E[e(k)] = 0, the MSE expression coin-

cides with the variance of the error signal:

σ2
e = E[e2(k)] = ξ(k) = (1 + ρ)σ2

n (20)

in which the excess MSE is rewritten as ρσ2
n in order to

isolate σ2
n. The expression of ρ depends on the adaptive

algorithm and must reflect how often the algorithm updates

the coefficients in steady-state, i.e, after the learning process

in the beginning.

Hence, one can define the desired probability of update, in

steady-state as:

Pup = P

[ |e(k)|
σn

>
√
τ

]

− P

[ |e(k)|
σn

>
√
τmax

]

(21)

in which, the coefficient update is only performed when:

√
τ <

|e(k)|
σn

≤ √
τmax (22)
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and will be analyzed hereafter.

Considering that the error signal has normal distribution,

the probability of update is modeled as:

Pup = 2Q

(

σn
√
τ

σe

)

− 2Q

(

σn
√
τmax

σe

)

(23)

where Q is the complementary Gaussian cumulative distribu-

tion function defined as Q(x) = 1√
2π

∫∞

x
exp−t2/2 dt.

Not taking into consideration the effect of τmax in equa-

tion (23), the parameter τ is obtained as:

√
τ =

√

(1 + ρ)Q−1

(

Pup

2

)

(24)

in which
√

1 + ρ = σe/σn follows from equation (20).

Since the filter coefficients, in steady-state, satisfy: w(k) ≈
w(k− 1), one can utilize equation (5), to obtain α(k)c(k) ≈
0. Hence, if we premultiply both sides of equation (13) by

α(k) it is possible to conclude that α(k) ≈ 0. As α(k) ≈ 0,

it follows that g(k) ≈ g(k−1) in equation (8), which implies

that β(k) ≈ 0 in (10). Thus, by using equation (9), one can

obtain c(k + 1) ≈ g(k). By substituting c(k) ≈ g(k − 1)
in equation (13), we obtain g(k) ≈ 0. As g(k) = p(k) −
R(k)w(k) in equation (14) and g(k) ≈ 0, it is possible to

infer that w(k) ≈ R−1(k)p(k), which is the same obtained

in RLS algorithm. Finally, one can conclude that the CG and

RLS algorithms are equivalent in steady-state [8].

According to the discussion above, both CG and RLS

algorithms estimate matrix R and vector p by using equations

(11) and (12). Therefore, in steady-state, the excess MSE

present in CG and RLS is equivalent, with derivation detailed

in [8], giving rise to the expression of ρ:

ρ =
ξexc

ξmin

≈ (N + 1)
Pup(1 − λ)

2 − Pup(1 − λ)
. (25)

The derivation is partially included in appendix A.

In the prediction case, which will be properly analyzed in

Section 4, σ2
e ≈ ξmin which leads to the substitution of ρ = 0

in equation (24), indicated in the DSCG algorithm outlined

in Table I.

As can be observed in Table I, the error signal e(k) is

calculated before the coefficient update, avoiding the extra

computation related to equations (11), (5), (14), (10) and (9).

At each iteration of the data selection algorithm, the error

signal e(k) is available so that it is possible to obtain an

instantaneous estimate of the MSE as ξ(k) = |e(k)|2. Then

according to equation (22) we can propose a data selection

strategy by comparing the current MSE level with τ(k)ξmin,

so that if:

ξ(k) ≤ τ(k)ξmin (26)

we can consider that the current data does not bring much

innovation, and consequently the filter coefficients update is

unnecessary. On the other hand, for

ξ(k) > τmaxξmin (27)

that is, the MSE level is too large, the current data can be

considered as an outlier. In this case, the coefficients are not

updated and the current data are discarded.

Indeed, only when we have τ(k)ξmin < ξ(k) ≤ τmaxξmin

the filter coefficients will be updated.

We also adopted a method for choosing the τmax in order to

eliminate some possible outliers: we trained the first 20% of

the data without τmax and in the following data we calculated

a √
τmax = mean(|e|/σe) + 3 ∗ var(|e|/σe), (28)

since 99.9% of the observations will be below the chosen√
τmax and the rest we considered an outlier.

TABLE I
DATA SELECTIVE CONJUGATE GRADIENT ALGORITHM

DSCG algorithm

Initialization
λ, η with (λ− 0.5) ≤ η ≤ λ
w(0) = random vectors or zero vectors
R0 = I

g(0) = c(1) = zeros(N + 1, 1)
γ = small constant for regularization
prescribe Pup, and choose τmax√
τ =

√

(1 + ρ)Q−1(
Pup

2
)

For prediction use ρ = 0

For system identification use ρ = (N + 1)
Pup(1−λ)

2−Pup(1−λ)
.

Do for k > 0
acquire x(k) and d(k)
e(k) = d(k) − wT (k − 1)x(k)

δ(k) =











0, if −
√
τ ≤ |e(k)|

σe
≤

√
τ

0, if
|e(k)|
σe

≥ √
τmax

1, otherwise

if δ(k) = 0
w(k) = w(k − 1)

if
|e(k)|
σe

>
√
τmax

e(k) = 0
d(k) = 0

end if
else

R(k) = λR(k − 1) + x(k)xT (k)

α(k) = η
cT (k)g(k−1)

[cT (k)R(k)c(k)+γ]

w(k) = w(k − 1) + α(k)c(k)
g(k) = λg(k − 1) − α(k)R(k)c(k) + x(k)e(k)

β(k) =
[g(k)−g(k−1)]T g(k)

[gT (k−1)g(k−1)+γ]

c(k + 1) = g(k) + β(k)c(k)
end if

IV. SIMULATION RESULTS

In this section, we present some simulations with generated

and real data in which the proposed algorithm in Table 1 is

applied in both prediction and system identification problems

for λ = 0.98 and η = 0.48. In the simulations, the probability

of update Pup is varied from 0 to 100% in order to verify

the data selection power. All the simulations presented in this

section are obtained by the average of 200 independent Monte

Carlo runs.

A. Simulation 1: Generated Data

Our main goal in this simulation is to identify an unknown

system, that is, a channel impulse response, described as:

h = [0.1 0.3 0 − 0.2 − 0.4 − 0.7 − 0.4 − 0.2]
T

(29)

A Gaussian noise, with zero mean and variance σ2
n = 10−3, is

added to the unknown system output so that d(k) = hT x(k)+
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n(k). The entries of input-signal vector x(k) are obtained

from a random Gaussian variable with zero mean and unit

variance. Indeed, as the probability of update Pup grows from

0 to 100%, one can verify in Figure 1a that the obtained P̂up

follows the prescription closely. The filter order N = 7 was

chosen to guarantee the convergence of the filter coefficients

to the optimal coefficients, detailed in equation (29). The

output of the unknown system y(k) and the filter output ŷ(k)
are depicted in Figure 1b, only for P̂up = 0.9% given that

for higher prescribed Pup the results are very similar. The

results shown in Figure 1 were obtained without the presence

of outliers. Simulations performed including outliers added to

the desired signal, had shown a decrease in the probability of

update P̂up when outliers amount 1% of the samples.

0 2 4 6 8 10 12

Trial number

0

0.2

0.4

0.6
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1

P̂
u
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u
p
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Pup

(a)
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Number of iterations, k
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u
t
si
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(b)

Fig. 1. Simulation 1: Comparison between (a) desired Pup and achieved

P̂up and (b) y(k) and ŷ(k) for = P̂up = 0.9%.

B. Simulation 2: Real Data

In this simulation, we use the algorithm in Table 1 to

predict the temperature from a significantly polluted area

in Italy. As in the previous simulation, the probability of

update varies from 0 to 100%. The temperature samples were

obtained from a data-set provided by University of California

at Irvine and recorded between March 2004 and April 2005.

At each day, the samples were estimated with intervals of one

hour, so that, the full stream of data is composed by one year

of estimations. As described before, we need to estimate the

predictor error variance σ2
e in the prediction problem to verify

if a new data is innovative. In order to do so, one can follow

the procedure described in [8]. In the prediction problem the

desired signal is x(k) whereas the input signal at the filter

corresponds a delayed version of x(k). Thus, the MSE can

be written as:

ξ(k) = E[(x(k + L) − wT x(k))2] (30)

giving rise to a expression for the minimum MSE:

ξmin(k) = r(0) − wT
o











r(L)
r(L + 1)

...

r(L + N)











(31)

where wo is the optimal coefficients of the predictor and

r(l) = E[x(k)x(k − l)]. Inspired by equation (31), we

can obtain an estimate of σ2
e at iteration k by replacing

wT
o by w(k) which are the coefficients of the adaptive

filter at iteration k. We can estimate r(l) through r(l) =
θr(l − 1) + (1 − θ)x(k)x(k − l) in which θ is a forgetting

factor. The value θ = 0.99 was utilized. Since we are using a

real dataset, outliers may be present, hence we obtain τmax as

in (28). In this way, the algorithm performs an estimate of σ2
e ,

the estimated prediction error, which is obtained whenever the

filter coefficients are updated. In order to verify the minimum

MSE, the filter order N is varied. As can be seen in Figure 2a,

it was possible to achieve a relatively low MSE level for

N = 20, around 0.83. Figure 2b compares the average number

of iterations where updates occurred P̂up with the prescribed

Pup, for N = 20 and L = 1 sample ahead. As can be

observed, the measured P̂up fits well Pup.

In the Figure 3, we illustrate the original and predicted

signals between iterations 8800 and 8900. For the rate of

updating as small as P̂up = 7.59%, we already noticed

an acceptable prediction performance. For rates higher than

0.173 no improvement on the prediction performance was

observed, leading us to conclude that for this particular

measured data only 17.31% of the data need to be stored.

V. CONCLUDING REMARKS

This paper proposes the data-selective conjugate-gradient

algorithm enabling a prescribed probability of updating. With

the data-selection strategy, it is possible to discard the least

innovative information acquired without impairing the quality

of the estimation. It is also possible to reject outliers which

can affect the learning process temporarily. Simulation results,

employing synthetic and measured data, show the benefits of

utilizing the DS-CG algorithm.

APPENDIX A

Since equations (11) and (12) are used to estimate R and

vector p and w(k) = R−1(k)p(k) = Rp = wo when k

tends to infinity, we will follow the same steps of the RLS

algorithm, see [8], pp. 226,

∆w(k) = λS(k)R(k−1)∆w(k−1)+S(k)x(k)eo(k) (32)

where ∆w(k) = w(k) − wo and S(k) = R−1(k). Con-

sidering that the DSCG updates only when there is relevant
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Fig. 2. Simulation 2: (a) MSE in steady-state as the filter order N increases

and (b) comparison between desired Pup and achieved P̂up.

information, we can apply an analytical model containing the

desired probability of update Pup:

∆w(k) = ∆w(k − 1)

+Pup[λS(k)R(k − 1) − I]∆w(k − 1)

+PupS(k)x(k)eo(k). (33)

Using the equation above and a similar derivation of the

excess MSE in [8], pp. 226-229, we obtain the equation (25).
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