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Abstract—Real-time detection of cycle-slips on undifferenced
carrier-phase measurements is an important task to properly
exclude wrong phase trackers from precise positioning algo-
rithms. The detection is especially challenging in high-dynamic
mobile scenarios, where traditional approaches (as those based
on single-channel polynomial fitting) may easily lead to false
positives. Using a multi-channel formulation of the problem,
the proposed technique takes benefit of the available data
redundancy (high number of tracked satellites) in order to
ameliorate the false positives. This robustness is accomplished
by adaptively estimating the orthogonal subspace spanned by
the polynomial time-varying residuals obtained from all available
channels (treated as a vector process), and using that subspace
to form efficient channel combinations with cancelled satellite-
receiver dynamics. The main advantage of the multi-channel
approach is that wrong measurements can be discarded without
needing any positioning estimate nor phase-ambiguity solver, thus
improving the accuracy, reliability and integrity of positioning.
The performance improvement is shown by means of theoretical
analysis and computer simulations.

Index Terms—Cycle-Slips, SVD, MIMO, GLRT, GNSS.

I. INTRODUCTION

Undifferenced carrier-phase measurements are used in high-
accuracy navigation systems, such as the GPS Precise Point
Positioning (PPP) [1], for stand-alone geodetic point posi-
tioning (static or kinematic) with centimeter precision. In
PPP, although most of the ionospheric delay is cancelled by
means of the dual-frequency ionosphere-free combination [1],
a long convergence time for estimating the phase ambiguities
is required before providing accurate navigation solutions [2].
In practice, carrier-phase measurements suffer from anomalies
such as cycle-slips (caused by poor signal to noise ratio, signal
blockage or ionospheric scintillation), receiver clock jumps
and satellite-receiver dynamics, among others. As cycle-slips
have a persistent and accumulative nature, reduction in posi-
tioning accuracy and loss of integrity ensues [3] unless they are
repaired or otherwise dealt with. Although high precision can
also be obtained from only raw code measurements through
singular spectrum based smoothing [4], cycle-slip free carrier
phases from classical closed-loops are normally preferred in
dual-frequency receivers, even in open loops [5].

Several methods have been proposed in the past for cycle-
slip detection (see [6], [7] and references therein). A common
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approach to enhance detection reliability is to form com-
binations of measurements to cancel out the time-varying
geometric range caused by satellite-receiver dynamics and
receiver clock instabilities. While satellite dynamics can be
mostly cancelled by de-trending (for example, through time-
differentiating the carrier-phase measurements), receiver dy-
namics is a much less systematic phenomenon that requires
special combinations to cope with [8][1]. For example, the
dual-band geometry-free combination cancels the satellite-
receiver dynamics, but it is affected by a time-varying iono-
spheric refraction term and scintillation. Another example
is the Melbourne–Wübbena combination [9], which is both
geometry and ionosphere-free, but it is notably noisier, as code
measurements are mixed with carrier-phases. In both cases,
the added noise effects make the detection mechanisms more
prone to false positives.

The structure and main aspects of this paper are summarised
in the sequel. In Section II we formulate the problem on
a multi-channel basis. In Section III we give an original
synthesis of the polynomial fitting idea [10] and high-order
time-differentiating approaches [8] for step-detection, which
are cast as a quadratic minimization problem with linear
constraints. This formulation allows to highlight the trade-off
between noise enhancement and latency in the single-channel
detection stage. Then, the core subspace idea in “satellite”-
domain is proposed in Section IV, which aims to detect
and exclude cycle-slips in high-dynamic receiver conditions
by simultaneously processing and adaptively combining the
polynomial residuals of carrier-phase measurements obtained
from multiple satellites, and without the need of having
receiver position estimated nor carrier-phase ambiguities fixed.
The proposed technique makes use of the fact that receiver
dynamics residuals, along with receiver clock instabilities, are
confined on a subspace of the covariance matrix estimated
from the multi-channel vector residuals. Therefore, eigenvec-
tors associated to the smallest eigenvalues of that covariance
matrix, which span the so-called noise (or minor) subspace,
provide optimal combinations of measurements for reliable
cycle-slip detection. With respect to the approach presented in
[6], which uses the singular spectrum of windowed carrier
phase measurements to detect anomalies in single-channel
mode, the main novelty of the present formulation lies on
the usage of the noise subspace of the overall redundant
multi-channel data, which allows the formulation of widely-
used design criteria for composite hypothesis testing. For

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2294



concreteness, we develop the Generalized Likelihood Ratio
Test (GLRT) [11] associated to the formulated problem, while
other detection criteria such as Rao and Wald tests are left for
future consideration. The main motivation behind the overall
formulation is the fact that tracking the noise subspace is po-
tentially much less demanding (in terms of required precision
and speed of adaptation) than tracking the receiver position.
An additional motivation is to obtain a low complexity detec-
tion scheme, totally uncoupled with any estimate of receiver
position (in contrast with [12] and the integrated adjustment
proposed in [13]) and with any navigation data received from
satellites. Section IV also provides a novel method to identify
and exclude the anomalous measure (i.e. identifying the fault
channel) exploiting the subspace structure, which is based
on non-coherent communications theory. Finally, simulation
results to highlight the benefits of the proposed method are
given in Section V, and main conclusions drawn in Section
VI.

Notation: (·)H denotes the Hermitian operator, |·| the
modulus, ‖·‖ the Euclidean norm, [·]i the i-th entry of a vector,
[·]i,j the entry at i-th row and j-th column of a matrix, � the
Schur-Hadamard (element-wise) product between two vectors,
Re [·] the real part, diag (·) the main diagonal of a square
matrix, (·)

α

a vector with elements
[
(·)

α]
i
= ([·]i)

α, 0 the
all-zeros column vector, and 1 the all-ones column vector.

II. PROBLEM FORMULATION

Let S be the number of channels (i.e. the available number
of tracked satellites), n the integer time index associated to
the sampled measurements, and K the observed time-window
size. The K × S run-time data matrix is defined as

[Y(n)]k,s = ϕIFs (n− k + 1) (1)

with 1 ≤ s ≤ S and 1 ≤ k ≤ K, where ϕIFs (n) is the GNSS
measurement sequence associated to s-th satellite, estimated
using the dual-carrier ionosphere-free (IF ) combination to
achieve efficient ionospheric residual and scintillation can-
cellation [1]. As the measurements are derived from carrier
phases, they have an inherent ambiguity (given by multiples of
the wave-lengths) that has to be solved before they can be used
for precise positioning. If cycle-slips were produced after fix-
ing ambiguities without being detected (and the corresponding
wrong channel excluded), the resulting accumulated ambiguity
would yield a negative impact on positioning accuracy.

In absence of cycle-slips, the non-anomalous data matrix is
modeled by four additive contributions:

Y(n) = XH(n)GH(n) + t(n)1H +HLP(n) +W(n) (2)

It is noted that the Hermitian (instead of Transpose) operator is
used in all equations for generality. The reason is that, although
the original data is real, complex filtering will be allowed for
the reasons that will become clear in Section IV.

The rationale of the model in Eq. (2) is as follows:
• The first contribution is based on the traditional linearized

range model, where the 3 × K receiver-dynamics ma-
trix X(n) contains the (possibly time-varying) x, y, z
receiver-position components at every column, and the

rows of the S × 3 (time-varying) geometry-matrix G(n)
contain the (unknown) unitary line-of-sight vectors from
receiver to every satellite.

• The second contribution models the receiver-clock jitter,
where t(n) is the K × 1 run-time vector of the receiver
clock error sequence, a common phenomenon that is
identically mapped in all measurements.

• The third contribution assumes that other slow varying
effects, such as the satellite dynamics or tropospheric
delays, fit a polynomial of order L inside the observation
window, where HL is a K×(L+1) Vandermonde matrix
whose elements are [HL]k,l = kl−1, with 1 ≤ k ≤ K and
1 ≤ l ≤ L+1, and (L+1)×S matrix P(n) contains the
(unknown) polynomial regression coefficients per satellite
in their columns.

• Finally, the fourth contribution (with [W(n)]k,s =
ws(n − k + 1)) denotes the multi-channel measurement
error (see [1] for details), where ws(n) is Gaussian i.i.d.
measurement white noise with variance σ2.

The uncoupling assumption with respect to prior position
estimates implies that matrices X(n) and G(n) in Eq. (2)
are assumed unknown.

Let us define the multi-channel data vectors yd(n) (S × 1)
and ydc(n) ((S − 1)× 1) as:

yd(n) = YH(n)hL (3)
ydc(n) = VHyd(n) (4)

where the K × 1 time-filter hL and S × (S − 1) spatial-filter
V are designed to cancel-out the third and second terms in
Eq. (2), respectively. As a result of the temporal and spatial
filtering formulated in Eqs. (3) and (4), respectively, in non-
kinematic mode, the components of ydc(n) will contain only
the residuals of every satellite associated to step-anomalies and
measurement noise. However, in kinematic mode, the receiver-
dynamics (first term of Eq. (2)) will be still prone to mask
these anomalies and, as a consequence, produce false positives.
Ameliorating these false positives is the main purpose of the
multi-channel method proposed in Section IV.

A. Summary of the main contribution

As the geometry matrix G(n) in Eq. (2) is of rank-3, and
one degree of freedom has been already lost through the
spatial filtering in Eq. (4), the key idea to reliably detect
and exclude step-anomalies without the need of estimating
X(n) (but still being robust to high receiver dynamics) is to
exploit the resultant eigen-structure of the (S − 1)× (S − 1)
multi-channel covariance matrix of the vector process ydc(n)
containing the polynomial fitting residuals from all channels,
estimated from the past N samples as

R̂ydc =
1

N

K+N−1∑
m=K

ydc(n−m)yHdc(n−m) (5)

where K is some estimation latency, equal to the latency of
single-channel anomaly detectors described in the sequel. This
assures that the eigen-structure of R̂ydc , exploited later on
to cancel high dynamics, will not be affected by the own
anomalies that we want to detect.
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III. SINGLE-CHANNEL POLYNOMIAL FITTING

The de-trending fixed filter hL in Eq. (3) can be de-
signed in different ways. Some well-known designs include
the successive phase differentiation approach (see [8] and
references therein) with K = L + 2. For example, for
L = 3, the filter coefficients would be trivially designed
as hH3 = [1,−4, 6,−4, 1] /16 whose squared step response
(given by [1, 9, 9, 1]/256) would provide a statistic for a simple
step-detection test. Similar models have been used in [14].

To avoid the noise enhancement phenomenon associated
with differentiating, a more general filter design is proposed
with (odd integer) K > L + 2 such that the extra degrees
of freedom are used to yield minimum noise enhancement
and maximum unite-step response at the middle point of the
observation window. This problem can be cast as a quadratic
minimization scheme with L+ 2 linear constraints (designed
to cancel the third term in Eq. (2)) as follows:

MinhL ‖hL‖
2 subject to HH

L hL = 0 & bHhL = 1 (6)

with the following rationale: i) minimizing ‖hL‖2 provides
minimum impact of the measurement noise on detection
performance; ii) the first constraint aims at cancelling the
polynomial trend; and iii) the second constraint aims at pro-
viding a non-zero sensitivity to a step, where b is a K × 1
vector modeling samples of a centered unite-step, that is,
[b]k = sign(k − (K − 1)/2)/2.

Using Lagrange multipliers, the solution of Eq. (6) becomes:

hL = H̃LfL (7)

where H̃L
.
= [b,HL] is the K × (L+ 2) extended con-

straint matrix and fL is the first column of matrix FL =(
H̃H
L H̃L

)−1
. Note that, for L even, as hL inherits the

odd symmetry of b, the constraint HT
LhL = 0 implies

HT
L+1hL = 0 and, therefore, hL+1 = hL, for which only

even values of L are of interest.
An insightful indicator of the unite-step detection perfor-

mance is the gain in signal-to-noise ratio (also known as
deflection in detection theory) at the de-trending filter output,
which is easily given by

GSNR =
(∣∣bHhL

∣∣ / ‖hL‖)2 = [FL]
−1
1,1 (8)

It can be shown that designing the step at the middle of
the window maximizes GSNR and makes sequence [F2l]

−1
1,1

monotonically decreasing with l, with [F0]
−1
1,1 = K/4.

Fig. (1) shows GSNR as a function of K for different
orders L, comparing with the traditional phase-differentiation
approach. Clearly, increasing K for a fixed L allows improving
GSNR at the expense of a longer detection latency of roughly
K/2 samples, as the sensitivity to a discontinuity is maximized
at the middle of the observation window.

IV. MULTI-CHANNEL DYNAMICS CANCELLATION AND
CYCLE-SLIP DETECTION

The proposed detection scheme consists on the following
three stages:

Fig. 1. SNR gain of the minimum norm criterion vs. K for different L.

a) Deterministic clock subspace cancellation: Matrix V
in Eq. (4), which can be computed off-line, should fulfill
VT1S = 0 to cancel the second term in Eq. (2). A simple
design ([8][1]) is based on forming differences from pairs
of satellites, such that a single column of V has only two
non-zero entries with values 1 and −1. This procedure is
equivalent to forming Time-Difference-of-Arrivals (TDOA)
based on carrier-phases, as it is used in hyperbolic position-
ing. This design, however, is discarded because it leads to
correlated noise after the combination, which would induce a
dimension-dependent Mahalanobis norm and distance (instead
of Euclidean) in the GLRT proposed later on (see Eq. (13)).
For that reason, unitarity of V is preferred. To be concrete,
V is constructed from the S × S orthonormal Fourier matrix
after removing the column associated with the zero-frequency
beam, which yields uncorrelated noise components on ydc(n).
Note that complex data is then obtained on ydc(n).

b) Block adaptive receiver-dynamics subspace cancella-
tion: Let U be a (S − 1)× (S − 4) unitary matrix spanning
the noise subspace of the de-trended data covariance matrix
R̂ydc given in Eq. (5). For S ≥ 5, matrix U can be obtained
adaptively either from R̂ydc through SVD in block processing,
or from the direct data ydc(n) in continuous processing using,
for instance, the well-known efficient and robust orthogonal
Oja (OOja) algorithm described in [15], which, in addition,
ensures the orthonormality of U at each iteration. The spatial
filter consists in projecting the de-trended data vector defined
in Eq. (4) onto the noise subspace as follows:

z(n) = UHydc(n) = CHyd(n) (9)

where
C = VU (10)

is a S × (S − 4) matrix that represents the overall MIMO
channel affecting the anomalies in yd(n). As a result, in the
obtained (S − 4)× 1 vector sequence z(n), satellite trending,
receiver dynamics and receiver clock instabilities are totally
cancelled. In fact, z(n) contains only the effect of the additive

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2296



measurement noise and the effect of potential step-anomalies
produced in some channel.

c) Multi-channel detection and exclusion: Splitting Eq.
(9) into the anomaly and noise contributions yields:

z(n) = βCHe(n) +w(n) (11)

where e(n) = 0 in absence of anomalies (hypothesis H0).
When a single step-anomaly is present in one channel (hy-
pothesis H1), as a consequence of the peaky de-trending
filter unite-step response, vector e(n) is modelled as e(n) ∈
{es}s=1,...,S , where {es} is the canonical orthonormal basis
(es has a single 1 in its entry s, the index of the fault satellite).
As a result of the imposed unitarity on V and U (and therefore
on C), the noise term w(n) has a diagonal covariance matrix
determined by the de-trending filter, that is

Rw = E
[
w(n)wH(n)

]
=
(
σ2/GSNR

)
I (12)

where GSNR is given in Eq. (8). Therefore, the problem of
anomaly detection can be cast as an equivalent problem of non-
coherent detection in orthogonal transmission in uncorrelated
Gaussian noise in the presence of a partially-known complex
MIMO channel C (estimated from the own data), and an un-
known real multiplicative fading term β. Since hypothesis H1

has unknown parameters (real β and integer s), a GLRT is pro-
posed for step-anomaly detection, which, under the assumption
that w(n) has i.i.d. normal entries as shown in Eq. (12), easily
leads to minimizing the difference between Euclidean squared
norm ‖z(n)‖2 and squared distance ‖z(n)− βcs‖2 against s
and β or, equivalently,

T (n) = max
s,β

(
2βRe

[
cHs z(n)

]
− β2 ‖cs‖2

)
(13)

where cs = CHes, such that an anomaly is declared if T (n) >
γ, with γ some threshold. Note that GLRT naturally provides
Maximum Likelihood estimates of s (index identifying the
fault channel) and β (the anomaly step-size). Optimizing first
for β for a given s yields β̂ = ‖cs‖−2Re

[
cHs z(n)

]
, which

re-inserted into the original test in Eq. (13) yields,

T (n) = max
s

(
Re
[
cHs z(n)

]
‖cs‖

)2

(14)

As cHs is the s-th row of MIMO matrix C, we can define:

d = diag
(
CCH

)
(15)

t(n) = d−1/2 �Re (Cz(n)) (16)

Then, a more compact expression of the final detector can be
written as follows:

T (n) = max
s

([t(n)]s)
2

and the fault channel index and step estimates are given by:

ŝ = argmax
s

([t(n̂)]s)
2 (17)

β̂ =
[
d−1/2 � t(n̂)

]
ŝ

(18)

where the epoch n̂ in Eqs. (17) and (18) is the maximizer of
the test statistic T (n) in time, that is n̂ = argmax

n
T (n), with

n ∈ {n|T (n) > γ}, i.e. an estimate of the time-of-arrival of
the anomaly.

V. SIMULATION RESULTS

As a proof of the concept, an scenario with S satellites
uniformly distributed in azimuth and identical elevation angle
of 45º is proposed. This geometry guarantees an small Dilution
of Precision (DOP, [1]). In hypothesis H1, a unite cycle-slip is
produced after N samples on the carrier-phase of one satellite
chosen randomly. To emulate some slow evolution of the ray
geometry in order to force a time-varying eigen-structure, the
s-th satellite elevation angle is changed at a constant angular
speed of vs, where {vs}1=1,...,S are independent random vari-
ables uniformly distributed within the interval [−vmax, vmax],
and vmax characterizes the overall time-varying nature of the
noise subspace to be tracked. For concreteness, for a sampling
period of 1 sec, a worst-case value of vmax = 0.1º per sample
is assumed, [8], which is almost an order of magnitude larger
than the typical values given in real scenarios. The de-trending
filter size and order are K = 81 and L = 4, respectively.

The goal of the following tests is to demonstrate the
performance gain of the multi-channel cycle-slip detection
in the presence of high receiver dynamics with respect to
classical single channel strategies. To this end, the receiver
dynamics are emulated as a circular motion at constant speed
of 0.05 turns per sample with a radius of five relative to
the unite step-anomaly, such that the de-trending filter is not
able to cancel if classical single-channel detection is applied.
Every performance indicator value is estimated using 2× 105

experiments.
Fig. (2) shows the detection performance in terms of the

achieved complementary area under ROC (Receiver Operating
Characteristics, [11]) (1-AUC). It is seen that single-channel
detection performs well only in non-kinematic mode (fixed
receiver). The two non-kinematic curves shown in the figure
constitute, in fact, a relevant benchmark, i.e. the inherent
performance lower bound associated to the cycle-slip detection
problem, against which to compare the performance of the pro-
posed technique. The single-channel approach gives too much
positives when the receiver has high dynamics, confirming the
inability of classical polynomial fitting approaches to cancel
receiver dynamics, as they work efficiently only to cancel
satellite dynamics. In contrast, the proposed adaptive multi-
channel approach, which estimates the noise subspace just
from the past N = 100 samples, provides significant discrimi-
nation capability between anomalies and receiver dynamics, as
appreciated by smaller values achieved of 1-AUC. Moreover,
an interesting satellite-diversity phenomenon arises that yields
improved performance when the redundancy of the scenario
(number of satellites above 4) increases. In other words, the
higher the dimension of the noise subspace, the higher the
dimension of the equivalent anomaly MIMO channel C in Eq.
(10), and the higher the detection robustness. This diversity
effect highly compensates the impact of increased number of
nuisance parameters in case of large data dimension. In fact,
the penalty caused by dimensionality is only observed in non-
kinematic benchmark mode, where the curve of S = 6 slightly
outperforms the curve of S = 14.

Finally, Fig. (3) aims at showing the ability of the algorithm
to correctly identify the fault channel, in terms of error proba-
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Fig. 2. Complementary area under ROC (1-AUC) of step-anomaly detection
as function of SNR, σ−2, of multi-channel vs. single-channel approaches.

bility of fault channel identification. As it can be appreciated,
the error probability decreases quickly as the number of
redundant channels increases, exhibiting, once more, a satellite
diversity gain effect, specially at moderate SNR. Notice that
the typical worst-case values of SNR in GPS are around 20dB
for low-elevation angles. The impact of N (the number of
samples used for estimating the noise subspace of residuals
using Eq. (5)) is also shown, which confirms a saturating
effect for large N and a robust performance for moderate N .
Moreover, even with few samples (small values of N ) the
subspace is well identified.

VI. CONCLUSIONS

A multi-channel detector of step-anomalies is presented that
makes use of the redundancy of the measurements to cancel
common perturbations that are prone to mask their presence.
The method provides significant robustness to high receiver
dynamics compared with classical single-channel polynomial
fitting approaches, avoiding the necessity to accurately track-
ing them. Canceling the receiver dynamics by subspace es-
timation provides a notable performance gain in terms of
false positives, requires few samples to work efficiently, and
allows the use of robust and well-known subspace track-
ing methods. The maximum benefit is provided in critical
receiver dynamics (just when polynomial-fitting approaches
clearly fail), as then the dominant major subspace is well
identified with few samples. Therefore, tracking the subspace
appears to be much more robust than tracking the receiver
position when the purpose is canceling the receiver dynamics
to avoid false cycle-slip detections. With enough redundancy,
the performance consistently approaches to the non-kinematic
benchmark bounds and, therefore, the technique shows a
potential ability for improving integrity in precise positioning.

Fig. 3. Fault channel identification error probability in kinematic mode as a
function of the multi-channel diversity (S) for different SNR and N .
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