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Abstract—This paper proposes an efficient channel estima-
tion algorithm for millimeter wave (mmWave) systems with a
hybrid analog-digital multiple-input multiple-output (MIMO)
architecture and few-bits quantization at the receiver. The
sparsity of the mmWave MIMO channel is exploited for the
problem formulation while limited resolution analog-to-digital
converters (ADCs) are used in the receiver architecture. The
estimation problem can be tackled using compressed sensing
through the Stein’s unbiased risk estimate (SURE) based
parametric denoiser with the generalized approximate message
passing (GAMP) framework. Expectation-maximization (EM)
density estimation is used to avoid the need of specifying channel
statistics resulting the EM-SURE-GAMP algorithm to estimate
the channel. SURE, depending on the noisy observation, is mini-
mized to adaptively optimize the denoiser within the parametric
class at each iteration. The proposed solution is compared with
the expectation-maximization generalized AMP (EM-GAMP)
solution and the mean square error (MSE) performs better with
respect to low and high signal-to-noise ratio (SNR) regimes, the
number of ADC bits, and the training length. The use of the
low resolution ADCs reduces power consumption and leads to
an efficient mmWave MIMO system.

Keywords—channel estimation, low resolution analog-to-
digital converter (ADC), compressed sensing, mmWave MIMO.

I. INTRODUCTION

The large number of antenna elements associated with
millimeter wave (mmWave) multiple input multiple output
(MIMO) systems makes it hard to use many analog-to-digital
converters (ADCs), which is a power hungry component [1].
Moreover, ADCs have much higher sampling rates for wide
bandwidth mmWave systems than at microwave frequencies,
and employing high speed ADCs increases the power con-
sumption and the cost significantly [2], [3]. Implementing
low resolution ADCs such as 1-bit to 3-bits in mmWave
MIMO systems efficiently improves the power metric of the
system [1]. Fig. 1 shows the hardware block diagram of a
mmWave system with a hybrid analog-digital architecture and
low resolution ADCs at the receiver. The use of 1-bit ADCs in
MIMO systems has been discussed in [4] and [5], and channel
estimation is investigated as well. In that work, the channel
is known perfectly to the transmitter and the receiver while
in practical scenarios, the channel state information (CSI) is
not known and should be estimated by both the transmitter
and the receiver.

References [6]-[8] estimate the sparse mmWave channel
using signal processing tools for high resolution analog to
digital converting structures, but the use of low resolution
ADCs at the receiver can significantly reduce the power
consumption without significantly affecting the capacity of

the system [9]. Recently, [10] and [11] considered 1-bit ADC
quantization systems and the sparsity in the angle domain
is exploited to be able to use compressed sensing (CS)
techniques to recover the channel parameters. The proposed
adaptive technique in [10] fails to provide good estimation
of the channel at low SNR values. Reference [11] proposes
only an expectation-maximization (EM) algorithm which has
high complexity since each iteration requires a matrix inverse
computation and convergence of the algorithm requires many
iterations. To observe the effect of low resolution ADCs, an
additive quantization model (AQNM) is considered in [12]
and [13]. The effect of AQNM is investigated in [12] for
the case of a point-to-point mmWave MIMO system, while
in [13] the desired rate of the uplink was derived for the
case of mmWave fading channels. References [14] and [15]
also implement the EM algorithm for a MIMO channel. Fur-
ther improvements to the EM algorithm are proposed using
expectation-maximization generalized approximate message
passing (EM-GAMP) [16] and vector approximate message
passing (VAMP) [17]. The use of EM-GAMP has been
exploited for a broadband mmWave MIMO channel model
with low resolution ADCs at the receiver in [18].

Reference [19] describes the advantages of the Stein’s un-
biased risk estimate (SURE) based parametric denoiser when
incorporated with the approximate message passing (AMP)
framework. This paper exploits the SURE-generalized AMP
solution combined with expectation-maximization (EM) steps
called the EM-SURE-GAMP in a mmWave MIMO system.
This novel solution avoids strong assumptions on the channel
statistics where SURE, depending on the noisy observation,
is minimized to adaptively optimize the denoiser within the
parametric class at each iteration. The proposed solution is
compared with the EM-GAMP solution for a narrowband
channel model and improved mean square error (MSE)
performance is observed for both low and high signal-to-
noise ratio (SNR) regimes. The unknown channel parameters
are modeled by a Bernoulli Gaussian distribution for both the
techniques.

Notations: x, x, and X, represent a scalar, a vector, and
a matrix, respectively; the ith column of X is X(i); the
transpose of X is XT while the conjugate transpose is X∗;
tr(X) and |X|, are the trace and determinant of X, while
||X||F is the Frobenius norm; the p-norm of x is ||x||p;
X⊗Y represents the Kronecker product of X and Y, diag(X)
generates a vector of the diagonal elements of X; vec(X)
is a vector showing all the columns of X, IN represents an
identity matrix of dimension N×N and 0A×B is an all-zeros
matrix of dimension A × B. E[.] represents the expectation
of a complex variable. RA×B and CA×B denote the set of
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Fig. 1: MmWave system with a hybrid analog-digital MIMO
architecture and low resolution ADCs at the receiver.

A× B matrices with real and complex entries, respectively.
A complex Gaussian vector with mean x and covariance
matrix as X is represented as CN (x; X), and i.i.d. indicates
the entries to be independent and identically distributed.

II. MMWAVE HYBRID MIMO MODEL

The high path loss and small number of multi-path com-
ponents in mmWave MIMO systems restrict use of the fading
channels used in the analysis of MIMO systems [1]. Consider
a single-user mmWave MIMO system with Nt antennas at the
transmitter, with Ns transmitted data streams to Nr receiver
antennas. For the number of multipaths computed by the
product of Ncl clusters and Nray rays in every cluster, the
narrowband channel is written as follows:

H =

Ncl∑
i=1

Nray∑
l=1

αilar(φril)at(φtil)
∗, (1)

αil in (1) is the complex gain of lth ray in ith cluster; at(φtil)
and ar(φril) are the normalized transmit and receive array
response vectors, where φtil and φril are the elevation angles of
departure and arrival, respectively. We modeled the antenna
elements as ideal sectored elements at both the transmitter
and the receiver [20]. In (1), the transmit and receive antenna
element gains are considered unity over the sectors defined
by φtil ∈ [φtmin, φ

t
max] and φril ∈ [φrmin, φ

r
max], respectively.

We implement uniform linear array (ULA) geometry. For
λ signal wavelength, d inter-element spacing, and a ULA
geometry with Nz antenna elements, the array response
vector is written as follows [21]:

az(φ) =
1√
Nz

[1, ej
2π
λ d sin(φ), ..., ej(Nz−1)

2π
λ d sin(φ)]

T
, (2)

Equation (2) can be used to compute the array response
vectors at both the transmitter and receiver with the corre-
sponding terms. The beamspace representation [22], [23] of
the narrowband channel in (1) can be written as follows:

H = ÂrZÂ∗t , (3)

where Z ∈ CNr×Nt represents a sparse matrix with a
few non-zero entries assumed to follow Bernoulli-Gaussian
distribution, while Âr ∈ CNr×Nr and Ât ∈ CNt×Nt are
DFT matrices.

Let us consider a MIMO Nt ×Nr system with a hybrid
analog-digital architecture with Nrf

t and Nrf
r chains at the

transmitter and the receiver, respectively. The number of RF
chains is smaller or equal to the number of antennas for both
the transmitter Nrf

t ≤ Nt and the receiver Nrf
r ≤ Nr. We

assume that the channel is quasi-static, i.e., it remains static
during a period of time, which includes both channel training
and data transmission phases. During the training phase, at
each time instance t, the transmitter generates a training
signal vector s(t) ∈ CN

rf
t ×1 following E[s(t)s(t)∗] = 1

Ns
INs ,

which is the input to the analog RF precoder at transmitter,
Frf (t) ∈ CNt×N

rf
t . This signal is transmitted through the

channel H and the received vector is processed by the analog
RF combiner at receiver, Wrf (t) ∈ CNr×Nrfr . The elements
of the RF precoders and combiners have equal norm as they
represent transmitter and receiver phase shifters. For the case
of number of streams equal to the number of RF chains,
the baseband matrices, Fbb(t) ∈ CN

rf
t ×Ns at transmitter and

Wbb(t) ∈ CNrfr ×Ns at receiver, are identity matrices so we
consider only RF/analog processing to formulate the channel
estimation problem. The received signal after RF/analog
processing, yc(t) ∈ CNr×1 for t = 1, . . . , T , is expressed
as:

yc(t) = W∗
rf (t)HFrf (t)s(t) + nc(t), (4)

where nc ∈ CNr×1 noise vector following the complex Gaus-
sian distribution with i.i.d. entries, i.e., nc ∼ CN (0, σ2INr ).
By concatenating all the T training sequences into the real-
valued equivalent form we have:

ȳ =

[
Re(ȳc)
Im(ȳc)

]
= Ψ̄

[
Re(zc)
Im(zc)

]
+

[
Re(n̄c)
Im(n̄c)

]
, (5)

where Ψ̄ =

[
Re(Ψ̄c) −Im(Ψ̄c)
Im(Ψ̄c) Re(Ψ̄c)

]T
∈ R2TNr×2NrNt and

ȳc, n̄c, Ψ̄c are the concatenated quantities for the received
signal, the AWGN and the system matrix, respectively.

Let us denote the K-level quantization of ȳ ∈ R2TNr×1

as the function Q
(
.
)
,

q̄ = Q
(
ȳ
)
, (6)

where q̄ = [q1 . . . q2TNr ]
T ∈ R2TNr×1. Each output element

takes one of K distinct values with,

qki = −lki +
∆

2
+ (k − 1)∆,∀k = 1, ...,K, (7)

depending on the quantizer lower and upper thresholds
[lki , u

k
i ] where lki = −κ

√
E{y2i } and uki = κ

√
E{yi}, ∀i and

κ ∈ [1, 5]. The quantizer’s step-size is given by ∆ =
uki−l

k
i

K ,
while the average power E{yi} can be obtained via an
automatic gain control (AGC) circuit.

III. PROPOSED CHANNEL ESTIMATION SOLUTION

A. Problem Formulation

Following the beamspace representation of the sparse
mmWave channel in (3), the system model of (4) can be
rewritten into an equivalent form for the channel estimation
problem, i.e.,

yc(t) =
(
sT (t)FTrf (t)Ât ⊗W∗

rf (t)Âr

)︸ ︷︷ ︸
Ψc(t)

vec(Z)︸ ︷︷ ︸
z

+nc(t), (8)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1840



thus, sparse estimation techniques can be utilized to recover
the sparse vector z.

Concerning the analog RF beamforming matrices, these
are designed as random matrices [24] as we require sensing
matrix to be random to be able to apply compressed sensing.
The transmitter and the receiver share a pseudo-random key
so receiver can predict the precoding matrix. In particular,
the angles of precoding/combiner matrices are generated
as random variables following a uniform distribution, i.e.,
φ̃i(t) ∼ U(0, 2π). Then, for each training instance t and
∀k = 1, . . . , Nt, i = 1, . . . , Nrf

t we use the matrix:

[Frf (t)]ki =
1√
Nt
ej(k−1) sin(φ̃i(t)), (9)

for precoding, and accordingly for the combiner at the
receiver:

[Wrf (t)]ki =
1√
Nt
ej(k−1) sin(φ̃i(t)). (10)

To overcome the quantization non-linearity effects at the
receiver, we employ quantization dithering [25]. In this work
we consider a simple type of dithering termed as non-
subtractive random dithering. Specifically, we assume that a
Gaussian random signal with zero mean, i.e., d̄ ∼ N (0, σ2

dI)
is added to the input, thus, the overall system is described
as:

r̄ = Q
(
Ψ̄z + n̄ + d̄

)
∈ R2TNr×1, (11)

where d̄ ∈ R2TNr×1 is the control signal. The overall noise
can be modelled as n̄+d̄ ∼ N

(
0, σ2I

)
, where σ2 = σ2

n+σ2
d.

B. EM-SURE-GAMP Solution for Channel Estimation

To solve the non-linear sparse channel estimation problem
of (8) we obtain an approximation of the maximum a-
posteriori channel estimator via the EM algorithm [11], for
l-th iteration, i.e.,

Eȳ|̄r,z

{
∂

∂z
ln p(r̄, ȳ|zl)

}
= 0, (12)

where the conditional probability density function (PDF)
involving r̄ and ȳ random variables is given by [26] as
follows:

p(r̄, ȳ|z) = ID(r̄)(ȳ)
1

(2πσ2)2TNr×1/2
e
−‖ȳ−Ψ̄z‖22

2σ2 . (13)

The EM algorithm is defined by the following two steps for
the (l + 1)-th iteration:

• E-step: Compute bl = [bl1, . . . , b
l
2TNr

] with

bli = − σ√
2π

e−
(li−[Ψ̄zl]i)

2

2σ2 − e−
(ui−[Ψ̄zl]i)

2

2σ2

erf(−li+[Ψ̄zl]i√
2σ

)− erf(−ui+[Ψ̄zl]i√
2σ

)
,

(14)
where li, ui are the lower and upper bounds for
the ith quantized sample of the quantizer for [Ψ̄zl]i
respectively; erf(·) is the error function.

• M-step: Estimate the sparse channel zl+1 ∈
R2NrNt×1 via solution of the linear system of equa-
tions:

Azl+1 = δl, (15)

Algorithm 1: EM-SURE-GAMP algorithm

1 Initialization: ẑ1 = 0, ξ0 = 0, c1 = 1
2NrNt

, τ1z = 1.
2 for t = 1, . . . , Tmax do
3 γt = Aẑt

4 τ tp = 1
2NrNt

‖A‖2F τ tz
5 pt = γt − τ tpξt−1
6 Update δl using EM-steps as indicated in (15)
7 ξt = Ep(γt|pt,τtp,δl)[γ

t|pt, τ tp, δl]

8 τ tξ = 1
2NrNtτtp

[
1−

Varp(γt|pt,τtp,δl)
[γt|pt,τtp,δl]

τtp

]
9 1

τtβ
= 1

2NrNt
‖A‖2F τ tξ

10 βt = ẑt + τ tβA∗ξt

11 θt = Ht(β
t, ct)

12 ẑt+1 = ft(β
t, ct|θt)

13 τ t+1
z = τ tβf

′
t(β

t, ct|θt)
14 ct+1 = 1

2NrNt
||τ tβξt||22

15 end for

with δl , Ψ̄T Ψ̄zl + bl and A , Ψ̄T Ψ̄ + C−1h ,
where C−1h is the correlation matrix based on the
channel known statistics.

The linear channel estimation problem in (15) can be
considered similar to the noisy quantized CS problem [27];
among the numerous existing algorithms for sparse inverse
linear problems, AMP-based solver has been shown to con-
verge faster, i.e. in few iterations, with predictable dynamics
together with low computational complexity. In its original
formulation for l1-minimization [28], AMP is a designed as a
variant of a soft-thresholding iterative algorithm; in [29], [30]
extensions of AMP have been used to handle wide class of
random sensing matrices and for sparse learning applications.
Generally AMP family of algorithms has been proven to
converge for the class of right orthogonal random matrices;
to reduce the convergence problems with general structured
random matrices, damping is often used. However, for our
system model we do not need to perform damping on the
update of the messages.

In particular, AMP-based algorithms perform a sequence
of MMSE estimations of the estimated measurement vector
γt = Ψ̄ẑt, such as in line 3 of Algorithm 1, where ẑt

refers to the estimate of the vector zl+1 for the M-step in
(15) and l is the EM iteration index. Regarding the MMSE
estimator for γt, since the channel noise model in (11)
is quantized Gaussian as it is modeled as the quantization
function, we need to adopt the generalized version of AMP
(GAMP) [31] whose computation is detailed in the Algorithm
1 where the expectation is over the posterior probability
p(γt|pt, τ tp, δl) which is dependent on the quantizer function
Q through (14). δl represents the vector of measurements
updated using the EM-steps as indicated in (15). In line 8
of Algorithm 1, Varp(γt|pt,τtp,δl)[·] represents the Variance
of the conditional probability distribution p(γt|pt, τ tp, δl).
Regarding the MMSE estimator for ẑt, standard AMP [28]
is based on the assumption that the prior p(ẑt) is precisely
defined and, therefore, it is possible to derive the associated
MMSE estimator.

In this work, we utilize a variant, named SURE-GAMP,
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which derives specific MMSE estimators tailored for the
dithered system model in (11) as follows. The SURE ap-
proach [19] aims to find the denoiser within a class with the
least MSE by optimizing the free parameters θt of some
piecewise kernel functions ft(·|θt) in order to obtain an
optimal adaptive non linearity; moreover, the optimization
of the denoiser does not require knowledge of the prior
distribution. In the simulations, SURE-GAMP uses a fam-
ily of parameterized denoising functions for the class of
Bernoulli Gaussian signals, which can be analyzed through
Gaussian-mixture distribution as well [18]. At each iteration,
the parametric SURE-GAMP algorithm adaptively chooses
the best denoiser, i.e. the one with the least MSE, by selecting
the parameters θt which correspond to the minimum of
the selection function Ht, such as in line 11 of Algorithm
1, dependent on the noisy data βt and the estimate of
the effective noise variance ct which leads to solving the
following optimization problem:

θt = Ht(β
t, ct) (16)

= arg min
θ

E[f(βt, ct|θ)− βt)2 + 2ctf ′(βt, ct|θ)]

In [19], authors have shown that this optimization is equiva-
lent to solving a linear system of equations whose dimension
equals the number of kernel functions which are the number
nker of basis functions representing f(·|θ) (nker = 3, in
the simulations). Therefore, the overall complexity of SURE-
GAMP is dominated by the matrix-vector multiplications in
lines 3 and 10 of Algorithm 1, whose order is O((NrNt)

2).
The EM steps as shown in (14) and (15) are combined with
the SURE-GAMP algorithm to avoid the need of specifying
a prior probability on zl+1. The algorithm converges after a
few iterations when the solution close to minimum MSE is
achieved.

IV. SIMULATION RESULTS

This section shows the performance results obtained for
the proposed EM-SURE-GAMP algorithm and the com-
parison is made with the EM-GAMP solution. Reference
[31] suggests the computation of the minimum MSE of
the estimate; combined with EM steps we can plot the
MSE results of EM-GAMP algorithm to compare with the
proposed solution. Following the condition Nrf

t ≤ Nt and
Nrf
r ≤ Nr for a hybrid analog-digital MIMO architecture, we

consider a simple case of Nt = 8, Nr = 8, and the number of
RF chains and streams equal to the number of antennas, i.e.,
Nrf
t = Nrf

r = Ns = 8. It provides us easier computation
for the analog precoder and combiner matrices. We can also
consider fewer RF chains and streams than the number of
antennas [32] to observe the channel estimation performance
plots. The number of multipaths is 5 and due to low overload
probability, the value of κ used in the quantization (see
Section II) is 4. We run the proposed algorithm for Tmax = 1
and 100 EM iterations. The performance results are obtained
for 100 Monte-Carlo realizations each.

Fig. 2 shows the mean square error (MSE) variations with
respect to (w.r.t.) the SNR when comparing the proposed EM-
SURE-GAMP algorithm with EM-GAMP for 1-bit, 2-bits,
and 3-bits resolution ADCs. We can observe that the proposed
algorithm achieves better MSE performance for both low and
high SNR regimes. For example at an SNR of 10 dB, the
SURE algorithm variant outperforms EM-GAMP by about 3

Fig. 2: MSE versus SNR.

Fig. 3: MSE versus the number of ADC bits.

dB in MSE terms for 1-bit quantization. For 2- and 3-bits,
the MSE gain is around 2 dB.

Fig. 3 again shows that EM-SURE-GAMP performs bet-
ter than EM-GAMP when MSE is plotted against the number
of quantization bits for different values of SNR such as -5 dB,
10 dB, and 20 dB. The training length for Fig. 2 and Fig. 3 is
T = 211, and EM-SURE-GAMP exhibits good performance
for a channel sparsity level, i.e., ratio of non-zero entries of
the beamspace channel and Nr ×Nt, of 8%. It can be seen
for example that with 3 bits resolution, a significant gain in
MSE for the SURE variant of around 6-7 dB compared to
EM-GAMP is observed for all SNR values.

Fig. 4 exhibits that the EM-SURE-GAMP solution out-
performs EM-GAMP solution w.r.t. the training length for a
range of training sequence lengths of 64 to 2048 and con-
verges more quickly than EM-GAMP for a channel sparsity
level of 8%, 15 dB SNR, when 1-bit, 2-bits, and 3-bits ADC
resolutions are considered.
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Fig. 4: MSE versus the training length T .

V. CONCLUSION

This paper proposes an efficient algorithm based on the
approximate message passing (AMP) framework to estimate
the channel in a mmWave MIMO system with a hybrid
analog-digital architecture and low-resolution ADCs at the
receiver. EM-SURE-GAMP is exploited to estimate the chan-
nel which provides the flexibility to avoid strong assumptions
on the channel priors where SURE, depending on the noisy
observation, is minimized to adaptively optimize the denoiser
within the parametric class at each iteration. When compared
with the expectation-maximization generalized AMP (EM-
GAMP) solution, the mean square error (MSE) performs
better with respect to low and high SNR regimes, the number
of ADC bits, and the training length.
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